R R RO

| AD=AOS57 646 ILLINOIS UNIV AT WBANI-CHAHPIIGN COORD!NATED SC!ENCE LAB F/6 5/1
COMPUTER SYSTEM DESIGN USING A HIERARCHICAL APPROACH TO PERFORM==ETC (U)
OCT 77 B KUMAR DAABOT-TZ-C-O!SQ

UNCLASSIFIED R=799

| oF 2

S

L
= = K 22

E

i 2%
T

12 it ne

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREA ; ANDAF ooy

N
o

= I

e A eV 1 A b e S SR

A SR R

| ‘ & REPORT R-799 ocroLaErv[R uu.u-e 77-2246
1 g (&=WCOORDINATED SCIENCE LABORATOR
D
E = |
1 2 COMPUTER SYSTEM DESIGN
= USING A HIERARCHICAL
I APPROACH TO
;I PERFORMANCE EVALUATION
o oz
S
il Eks
[e |
[=3
g
| I
|
)I
, L
| ¥

UNCLASSIFIED I S ML Y ok A e o o e o
SECURITY CLASSIFIGATION QF, THIS PAGE (When Data Entered) _ “" * - ¢ * - ' © e g S8y e - 1
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

f| REPORT NUMBER 2. GOVY ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

COMPUTER SYSTEM DESIGN USING A HIERARCHICAL Technical Report
APPROACH TO PERFORMANCE EVALUATION ""“'°R@;;5“°-R5’°“TN““°ER/z’“
R-799; UILU-ENG 77-2246

8. CONTRACT OR GRANT NUMBER(a)

Balasubramanian Kumar DAAB-07-72-C~0259; <l
MCS 73~-03488 AOL

7. AUTHOR(s)

= e ———————————————————
9. PERFORMING ORGANIZATION NAME AND ADDR 10. PROGRAM ELEMENT, PROJECT, TASK
Coordinated Science Laboratory AREA & WORK UNIT NUMBERS
University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

11. CONTROLLING OFFICE NAME AND ADDRESS

12. REPORT DATE
October, 1977

Joint Services Electronics Program AT T R T
161
14, MONITORING AGENCY NAME & ADORESS(/f different from Controlling Office) 15. SECURITY CLASS. (of this report)
UNCLASSIFIED

1Sa. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Design

Hierarchy

Modeling

Performance Evaluation

Optimization

20. TRACT (Continue on reverse side If necessary and identify by block number)
The concept of a hierarchy of system models for the performance evaluation

of computer systems is introduced. The characteristics and construction of
such a hierarchy are discussed. Since it consists of models that span a wide
range of complexity and cost, such a hierarchy is a very useful tool in the
cost-effective design of computer systems.

A procedure that uses such a hierarchy in computer system design is
developed. The procedure uses the hierarchy to trade off cost and accuracy
of system performance predictions. The viability and usefulness of the

4

DD ‘:2:‘1” 1473 EOITION OF 1 NOV 63 1S OBSOLETE

.. e ewe o
.

Data Entered)

e i 1

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Dete Bntered) .

‘ | 20. ABSTRACT (continued)

_,Pbrocedure are demonstrated by applying it to the optimization of the -
6L’,architecture of a complex computer system - the CPU-memory subsystem

of the IBM System 360/Model 91. In most of the experiments conducted,
the procedure converged, if not to the exact optimum, at least to

within a very near region of the optimum. A sensitivity analysis
procedure is then used to identify the exact optimum, as well as to
determine the sensitivity of the objective function to changes in the
system parameters. The efficiency of the overall procedure is shown

to be considerably greater than that of the worst-case approach to system

desj-%ﬁﬁ &8

71 ~Some conclusions are drawn about this class of single stream,

f ! y//ﬁighly pipelines, CPU~memory architectures. Extensions of the hier- ﬂ
2 archical approach to performance evaluation are proposed.

\

T TP I

L4l

UNCLASSIFIED

{
{
|

~——

[
i
[
i
i

| gsCTRiOR ter - |
atis ¥iia smmx ‘1/) i
: R N | :
§ viusHress o \
! ST EITE. SO 3

\

g

2
e ABRAT "B . j
T h e S :
; iy [//" .) ‘/" S
T -i;-» i i ‘/ R '775 UILU-ENG ~77-2246 j
4_
‘%OMPUTER SYSTEM DESIGN USING A HIERARCHICAL 1
. APPROACH TO_PERFORMANCE FVALUATION /
S §5Er
/ / BALASUBRAMANIAN/KUMAR /
/0 | i B e i ey
A ; v 5 i
o i simany / J //@—C:Z" ‘CL/{ /;_.?4 . ’«.//'
y ! e P ry l / o /) - ;

N pANBOT =72 -C- 0257, WSF-pCE TS~ P37

This work was supported in part by the Joint Services Electronics
Program (U.S. Army, U.S. Navy and U.S. Air Force) under Contract DAAB-07-
72-C-0259 and in part by the National Science Foundation Grant under
MCS 73 03488 AO1.

} " -
) ./ (X
.

i

f

e e S

Reproduction in whole or in part is permitted for any purpose
of the United States Government.

U N7

AUC 18 1978

l
Approved for public release. Distribution unlimited. U:LEDLEJU U

Q({//

COMPUTER SYSTEM DESIGN USING A
HIERARCHICAL APPROACH TO PERFORMANCE EVALUATION

e
S —

-1

BY
f | BALASUBRAMANIAN KUMAR

B.Tech., Indian Institute of Technology, 1973
M.S., University of Illinois, 1976

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Science
in the Graduate College of the
: University of Illinois at Urbana-Champaign, 1978

Thesis Adviser: Professor Edward S. Davidson

Urbana, Illinois

i

IR W

COMPUTER SYSTEM DESIGN USING A
HIERARCHICAL APPROACH TO PERFORMANCE EVALUATION

Balasubramanian Kumar, Ph.D.
Coordinated Science Laboratory and
Department of Computer Science

University of Illinois at Urbana-Champaign, 1978

The concept of a hierarchy of system models for the performance
evaluation of computer systems is introduced. The characteristics and
construction of such a hierarchy are discussed. Since it consists of
models that span a wide range of complexity and cost, such a hierarchy is
a very useful tool in the cost-effective design of computer systems.

A procedure that uses such a hierarchy in computer system design
is developed. The procedure uses the hierarchy to trade off cost and
accuracy of system performanc; predictions. The viability and usefulness
of the procedure are demonstrated by applying it to the optimization of
the architecture of a complex computer system - the CPU-memory sybsystem
of the IBM System 360/Model 91. In most of the experiments conducted,
the procedure converged, if not to the exact optimum, at least to within
a very near region of the optimum. A sensitivity analysis procedure is
then used to identify the exact optimum, as well as to determine the
sensitivity of the objective function to changes in the system parameters.
The efficiency of the overall procedure is shown to be considerably greater
than that of the worst-case approach to system design.

Some conclusions are drawn about this class of single stream,

highly pipelines, CPU-memory architectures. Extensions of the hierarchical

approach to performance evaiuation are proposed.

Al

>

e

iii

ACKNOWLEDGMENT

; The author is struck by a strange feeling of inadequacy in trying
to acknowledge Professor Ed Davidson's contribution to this work.
Professor Davidson's guidance, friendship, encouragement and genuine
! personal warmth render conventional expressions of gratitude woefully
inadequate. The author can only hope that some day, he himself will be
able to contribute so much to someone else's work.

The author thanks all his colleagues and professors in the
Department of Computer Science and the Coordinated Science Laboratory,
b especially Professor Dave Kuck, Janak Patel, Ravi Nair, Joel Emer,
Trevor Mudge and Alan Gant for contributing so much to his education.

For making his stay in Urbana-Champaign so much fun, the author
: is deeply indebted to his friends Arvind and Sashi Parthasarathi.
o Finally, the author thanks Ms. Hazel Corray for her impeccable

typing, attention to detail and cheerful assistance.

iv 1
TABLE OF CONTENTS
CHAPTER Page
1 INFRODUCTEON o3 e e« oasicio siaaierisis aialn s sisioisislaiaio s s a s oslslslainisis e ses aeas 1
1.1 Problem Statement and ObjectivVesS s..ecevevcevencacscccnne 1
‘ a2 Backoraundi ticis's e clslaisie slololalotaials sis aialis o s1s /s ellolsie)sileAsiieln e ntatelereials 2
i 1.3 Structure of the DiSSertation ...csscecossosssssnsssecssess 3
E, 3 2 A HIERARCHICAL APPROACH TO PERFORMANCE EVALUATION .cececcecccas 4
2ol INCEOAUCERON & ol ticiclol dioleldderoial sielaio e aiois oratazalaioin eioeiers olisrora oo oin 4
2.2 Performance Evaluation Concepts .ee...cccesooccenccncccss 4
2.3 Systen Modelling CONCEPESile - sineicesesiaionssivianansoss 5
3 2.3.1 Types of Models ..c..ccssicecsionsossssssnssossses 5
3 2532 Walidiey of Models) coicicniciisrosseicisess e sbnese 6
E; 2.3.3 Other Characteristics of Modelscceveuveeene 6
5 2.3.4 Overview of the Model Building Process 7
E |
E | 2.4 A Hierarchy of System Modelscecevucncncnnns e msininie 8
| 2.4.1 Motivation Behind the Hierarchy Concept 9
2.4.2 Characteristics of the Hierarchycciv.ane aiete 10
. 2.4.3 Construction of the Hierarchy Sle AT
! 2.5 System Optimization Using the Performance Model
1 Hieratehy vy oo v Ao el serales ciant v s erals o e o e e S A 12

3 MODELS FOR A COMPLEX COMPUTER SYSTEM: THE IBM 360/91 15

J.l ERETOAUCEION cion v vv v v ciisionse o vis e @ smmnemmss s e e iesoeseees 15
3.2 « Description of the 360/9L sicicovsvvivissnonsssvecavessss 15

3.2.1 Pipelining and Parallelism in the 360/91 15
3.2.2 CPU-Memory Architecture of the Model 91 L
3.3 Overview of the Model Hierarchy for the System 23
3.4 A Control Stream Model of the System .eceieveeeceieecesss 24

3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7
3.4,8
3.4.9
3.4.1
3.4.1

The Control Stream CONCEPt sescssvssesavossssssane 25
Assignment of Logical Resources in the Model 26
Control Stream Generation c.c.cececveeccsoccocans 27
Terminology Used in the Model Descriptxon ceivene 31
Resources and Buffers in the Model «eeceecccccens 33
Control Flow of an Instruction ProcessS sceceeceees 34
Control Flow of an Operand ProCessS .e.eeeeeececcee 42
Control Flow of a Memref Process .eeceeseececccoss 43
Approximations Made in the Modelccoccevee 44
.4.10 System and Model Parametersececsveosacses e 45
.11 Performance Measurements Using the Model 46

T T T YR T T T I NI

CHAPTER Page
3.5 An Analytical Performance Model of the System 47 4

3.5.1 Introduction to Regression Theorycccc.00 48
3.5.2 The Analytical Model of the Systeém cciceeeeeccoes 50

4 SYSTEM OPTIMIZATION USING THE PERFORMANCE MODEL HIERARCHY 53

System QOptimization Objectivescieviveveenneeciuceaaes 53

INELOAUCETON, o aia sin cisis aiaie aisisisioisis o s slosis siaisias o s ssssasisnisale 53 i
Application of the Hierarchical Approachccccceveens 53

S~ F
wN =

4.3.1 Roles of the Models in the Hierarchy 54

! 4.4 The Optimization Procedureccecevseceesssaceacanses 35

4.4.1 Definitions and Overview c...cecccecccoscecacssas 55
4.4.2 System Parameter Metrics and a Multi-
dimensional Grid in the Spacecccveeececececs 58
4.4.3 The Initial Calibration Setcceccececeecens . 58
4.4.4 The Movement Rulece000e.e. e elieiatskatersare ainsiote 60
4.4.5 The Stopplng Rule ..c.ccisecasicsssscnsnesssosssis 65
4.4.6 Heuristic Algorithms for Recalibratiom
of the Analytical Model .ii.scssnsnesisvessvsesose 09
- 4.4.,7 Bounding the Error of the Analytical Model 72
; 6.4.8 Sonsitivity ANBITNLE cocsvnsesininsnsansssanssans 1O
4.4.9 Efficiency of the Optimization Procedure 77

4.5 Adaptation of the General Procedure to the Case-Study.... 79

4.5.1 Continuous vs. Non-continuous System Parameters.. 79
4,5.2 Adaptive Metric for the mc Dimension .eeceeeccess 80
4,5.3 Feasibility ChHecking .. . sssscesvosmsvsscnsvssson 82

5 DESCRIPTION OF EXPERIMENTS AND ANALYSIS OF RESULTS .cccvveceees 86

s | 3.1 IHETOCUCEION svisvvismnesosavssamss ss®s s e 8V ewensssesees 86
5.2 SOLCWATE USEU v v vv0wom v vv s domeees s e s o ome e e e s e 86

E 5.2.1 The Control Stream MOdel ..ccscovvvsnvossssvacuns 86
5 5.2.2 The Analytical Model e...e.veveveeeeeconensnenene 87

5.2.3 The Local Optimization Procedurec.eceeeeeee 87
The System CoSt Model ...ccccevceccecccccoccsscssscncnnns ’7
Traces Used in the Experiments ...ceccecececceccsscnconcs 89

Discussion of Optimization Experimentsceceeeeececes 91

(S,)
.
w W

5.5.1 An Iteration of the Global Optimization

PLOCRAULE vevossivavvovsostosssssssssocssnsssns .o 91
5.2 Experiments on EIGEN .c.ceeecsccsscencscscccsnnns 95
5.3 Experiments on GAUSS ..cccsvssceonsssssssvencssese 1ll
5.4 Experiments on ERROR ccesvvccecovcccscsssvcesases L19

CHAPTER

v

5.7.1

6 CONCLUSION

oo O
« o
W -

6.3'1

6.3.2

APPENDIX A ..ccececcscanns

APPENDIX B cccccecccsossoccccsnoososscasoscacssnsassans

.6 Efficiency of the Optimization Procedurec.oc..
«7 Some Architectural ConclusSionscccoevevesssoascsoses

A Final Design for the Systemcecveeeeane

Summary of the Research ,......
Accomplishments of the Researchc.cvveeuvenenes
Suggestious for Further Research

Shortcomings of the Optimization Procedure
and Suggested RemediesSccceieeeececnccncans
Further Research into the Hierarchy Concept

and General Issues

LIST OF REFERENCES..ccccccccscecsassccaccas

VITA cecececcacens

eeeo e 000

s eeec0ce000 00000

ee e oo

e s 00 ecesecee0ss s s0s00 000

s e e s ecesccvcsece

vi
Page

126
129

131
133
133
133
134
135
138
141
143
159

161

CHAPTER 1

INTRODUCT ION

1.1 Problem Statement and Objectives

Computer systems can be viewed from three different aspects:
1) Structure
2) Function
3) Performance
The tasks that the system is expected to accomplish, constitute its function.
Structure refers to the organization of the system components, and perfor-
mance is a measure of how well the system accomplishes its function. Thus
a well-designed computer system is one whose structure is such that it
accomplishes its function to meet some performance and cost constraints.
It is thus very important to understand the relationship between the per-
formance of a computer system and its structure and function. This is true
both during the design phase of a new system, as well as in the re-con-
figuration of an existing system to optimize its effectiveness.
In this dissertation, we will present a hierarchical approach to
the performance evaluation of computer systems. We will show that a
hierarchy of system performance models is a cost-effective way of examining
computer system design questions. We will lay down the characteristics that
such a hierarchy should possess. We will then develop a procedure for the
use of such a hierarchy in the design of a computer system. The principles
embodied in our approach will be exemplified by a case-~study of the design
of a computer system,
In earlier work [KUM76a, 76b], we developed a technique for

modelling a system, called control stream modelling. This is an effective

technique for the performance evaluation of complex computer system. by
simulation. 1In this dissertation, we will use such a control stream model

in our case-study.

1.2 Background

Performance evaluation of proposed computer systems, for the
purpose of examining design questions, is not a new concept. For example,
Ballance et al. [BA162] describe a simulation model that was used in the
design of the look-ahead unit of the IBM Stretch system. Boland et al.
[BOL67) discuss a simulation model used in designing the memory unit of
the IBM System 360/Model 91. However, these were used only to examine a
few very specific system design questions. We know of no work in the field
that looks at major overall architectural design questions, or a cost-
effective tool for examining them. It is our belief that interrelationships
between system design parameters can be understood, and real tradeoffs made,
only when global, many-parameter models of the system are constructed and
analyzed.

Hierarchical approaches to modelling have also been examined in
the past, (SEK72, BRO72, BHA76]. However, these have been concerned with the
reduction in the complexity of analytic models, by structural decomposition
of the system model to form sub-system models that can be analyzed inde-
pendently. Thus all the models in the hierarchy use the same modelling
tools. We believe that ours is the first attempt to bring together a variety
of state-of-the-art modelling tools, whose intrinsic range of cost and
complexity make them very suitable for use in a hierarchy. We also believe
that analysts in the past, have not laid enough emphasis on proper cali-
bration and validation techniques for models. This dissertation will deal 1

in detail with such concerns.

- v .

S« MO e 3 S e S

o

Y

1.3 Structure of the Dissertation

In Chapter 2, we introduce some basic performance evaluation and
modelling concepts. We then discuss the motivation behind the hierarchical
approach to system modelling. The characteristics and construction of such
a hierarchy are then described. Finally, we provide an overview of a system
optimization procedure that uses a hierarchy of system performance models.

Chapter 3 introduces the system chosen for the case-study - the
CPU-memory subsystem of the IBM 360/91. After a short description of the
system architecture, the hierarchy of models used to analyze its perfor-
mance is described. The two models used are a control stream model, alluded
to earlier, and an analytical model built by regression techniques. The
models are described in some detail in this chapter.

In Chapter 4, we develop a procedure for optimizing a system
design, with respect to some objective function that includes system per-
formance as a component. Using the hierarchy in the procedure, ensures
accuracy of performance predictions, and convergence to an optimum system,
and at the same time renders the procedure cost-effective. We also attempt
to bound the approximation error of the hierarchy, and to estimate the
efficiency of the optimization procedure as compared with some simple bench-
mark procedures.

Chapter 5 discusses the results of applying the procedure to the
system chosen as a case-study, for three program traces. The procedure is
shown to converge, if not to the exact optimum system, at least to within
a near region of the optimum. Sensitivity analysis then identifies the
exact optimum besides determining the sensitivity of the objective function
to system paramter changes near the optimum.

Chapter 6 summarizes the research and offers suggestions for

further research.

o b

i G

CHAPTER 2
A HIERARCHICAL APPROACH TO PERFORMANCE EVALUATION

2.1 Introduction

In this chapter, we first introduce some basic performance
evaluation and system modelling concepts. We then attempt to classify
models with respect to a variety of features. The hierarchical approach
to performance evaluation is introduced and the construction and charac-
teristics of such a hierarchy are discussed. Justification of a hierarchy
of models as a powerful tool for the cost-effective design of computer
systems is then given and an overview of a procedure that uses a hierarchy

to optimize the design of a computer system is presented.

2.2 Performance Evaluation Concepts

The performance of a computer system is defined as the effective-
ness with which the system handles a specific application. Various measures
can be used to describe the performance of a computer system, one of the
most common being the system throughput, i.e., the number of tasks processed
by it in unit time. Once a measure has been chosen as the one that des-
cribes the system performance most satisfactorily, performance evaluation
can be viewed from two different aspects:

1) The determination of the performance function F, such that

System performance = F(avl,... av s WYysee. wvn)

i

system workload parameters.

where the av, are the system architecture parameters, and the wvj are the

2) The estimation of values of the above performance function

for a specific set of system parameter values

(avl,-.. av

wl’oco wvn)o

m?

2.3 System Modelling Concepts

Any analysis of a system is only an analysis of a model of the
system. This is true of system performance evaluation, which is an analysis
of one aspect of the system - its performance. A model of a system can be
defined as an abstraction that contains only the significant variables and
relations of the system. We now discuss a few aspects of system modelling.

2.3.1 Types of Models

Models used for system performance evaluation can be divided
into three broad classes [SV076]:

a) Structural Models describe aspects of individual system

components and their interactions. They usually serve as the basis for
more abstract models, by providing an interface between the real system
and the more abstract models. An example is a block diagram model of a
system in which each block is a system component.

b) Functional Models define the operation of the system such

that the model can be analyzed mathematically or studied empirically.
Examples include queueing models that have mathematical solutions for
the performance measures of interest, and simulation models that provide
empirical evaluations of performance measures.

c) Analytical Performance Models formulate the dependence of

performance on the system workload and architectural variables. Such
models are usually functions that are fitted to data obtained from
functional models.

Some models fall across the above classes as we will see in

the next chapter.

ey

2.3.2 Validity of Models

A model is said to be valid when the performance measure values
generated by it agree with the actual observations of system performance

to within a desired range of accuracy. The range of validity of a model

is the region in the multi-dimensional space of system parameters, over
which the model is valid. Usually the range of validity and the accuracy
of a model have to be traded off.

There are varying degrees of rigor to the validity of models

[ZEI75). At the least rigorous level, a model is replicatively valid, if

it matches the performance values already acquired from the real system.

At a more rigorous level, a model is predictively valid, when its

predictions of performance are corroborated by observations of the

system. At the most rigorous level, a model is structurally valid if

it not only reproduces the observed system behavior, but truly reflects
the way in which the real system operates to produce this behavior.

The choice of the rigor with which a model is judged for
validity, depends on the specific purpose that it is being used for.

2.3.3 Other Characteristics of Models

Besides validity, some other aspects of models that we will be
interested in, are:

1) Cost: This is usually tied to the computational complexity of
the model, i.e., the work involved in using the model to make a single
evaluation of system performance. Thus simulation models are usually
quite expensive in their computational demands, while mathematical models
such as queueing models and analytical performance models are quite

inexpensive.

oo

TR ETRT RN T Y

2) Amount of information obtainable from the model: Very often,

the analyst is interested in more than a single measure of system per-
formance. For example, in a system which is an interconnection of
resources, resource utilization is as important a measure as system through-
put, since it can point to system bottlenecks. Models with higher struc-
tural validity tend to be capable of yielding more information than models
of merely predictive validity. Further, the detail with which such infor-
mation is available varies considerably. Thus, a queueing model may attempt
to yield accurately only the average utilization of a resource, while a
simulation model can yield an entire histogram of resource utilization.

2.3.4 Overview of the Model Building Process

Regardless of the type of model chosen, there are certain
common features in the process of building up the model as a tool for
performance evaluation. The following are some of the basic phases of the
model building process:

a) Choice of experimental frame: The experimental frame charac-

terizes a limited region of the entire system parameter space, in which the
system is to be modelled. All the aforementioned characteristics of a model
are only with respect to the experimental frame for which the model is
constructed. Thus a model may be invalid in an experimental frame other
than the one chosen, but only its validity in the chosen frame is of
importance.

b) Model calibration: Calibration is the process of estimating

the parameters that describe the model in the experimental frame. For
example, the parameters of an analytical model that expresses performance

as a linear function of the system parameters,

b

m n
P=f +Z f.cav, + T VY, wv,
pttt = T B N -]

are the coefficients Bi(i =0 throughm) and Yj (j=1 through n). The
calibration of such a model may involve the fitting of a linear regression
equation to observed values of system performance for varying values of the

system parameters.

c) Model validation: Once a model has been calibrated, it can

be used to predict system performance. Validation is the process of
establishing the validity of the model by comparing model predictions of
performance with observations of system performance. If the validity is
satisfactory, the model predictions in the experimental frame will be
accepted. 1If the validity is poor, the model may have to be recalibrated
with the new observations of performance. Calibration and validition for
any model can simultaneously improve to a point; beyond that point, they
may have to be traded off. Thus, calibration using data from a larger
number of observations than the order of complexity of the model may cause
poor overall validity in the region. On the other hand, the same model may
yield an acceptable degree of validity for more local sub-regionms.

d) Prediction using the model: Once a model has been calibrated

and validated in an experimental frame, it can be used to predict system
performance in that frame. However, if the experimental frame should ever
change, the process of calibration and validation will have to be repeated

for the new frame.

2.4 A Hierarchy of System Models

We now introduce the concept of a hierarchy of system models for

performance evaluation and discuss the motivation behind the concept and

el s s kit kgt e

|

the characteristics that a hierarchy needs to satisfy to be a cost-effective
design tool. We also discuss procedures for the construction of a hier-
archy.

! 2.4.1 Motivation Behind the Hierarchy Concept

We will assume that a computer system analyst is evaluating the
performance of a computer system for one of the following reasons:
a) To design a computer system which is the optimum system
for some objective function that includes system per-
formance as a component.
b) To optimize an existing computer system for an objective
| function as in (a).
In either event, the analyst is interested in obtaining an optimum system
configuration.
& Since optimization procedures usually use an iterative scheme to
converge to the optimum, a number of evaluations of the objective function
will be called for. This requires that the performance component of the
function be evaluated with minimum cost, so as to keep the cost of the

optimization procedure within reasonable bounds. On the other hand, the

T

performance evaluation must be sufficiently accurate to meet the accuracy

; demanded of the optimization procedure. A performance model hierarchy
provides a cost-effective trade-off between accuracy and computational cost,
in much the same way that a memory hierarchy is a cost-effective tradeoff
between memory access time and cost.

i Further, performance information of varying levels of detail is
needed at different stages of the system design process. Thus at the initial
stages of design, crudely derived performance information can be used.

Later, as the major design features are closer to convergence, more detailed

—

10

and accurate performance information will be needed. A performance model
hierarchy, as defined below, is compatible with this need.

2.4.2 Characteristics of the Hierarchy

The hierarchy of performance models will have the following
characteristics:

The low end of the hierarchy will contain models of high struc-
tural, and consequently high predictive, validity. These models tend to re-
semble the resource configuration of the system. It is expected that they
will have a broad range of validity in the system parameter space and that
they are capable of yielding detailed performance information of great
accuracy. The price to be paid for these desirable qualities is in the
high computational demands of these models.

The high end of the hierarchy will contain models of only pre-
dictive validity and their range of validity in the system parameter space
is much more limited. The performance information that they yield generally
has less accuracy than the low level models and is apt to be of a summary,
i.e., less detailed, nature. However, they have the advantage of being very
much less demanding in their computational requirements.

Intermediate levels of the hierarchy will have intermediate values
of these characteristics. Thus travelling up the hierarchy, one sees models
that have:

1) Less structural validity

2) More limited range of validity

3) Less detailed performance information

4) less accurate information

5) Lower computational requirements.

i p—

R—

Sl i st

e e itk B o

11

In terms of the types of models described in Sec. 2.3.1, there will be
structural models at low levels, functional models at intermediate levels
and analytical models at high levels of the hierarchy.

2.4.3 Construction of the Hierarchy

The actual models themselves must be chosen from the state-of-the-
art modelling tools available. Thus a typical 3-level performance hierarchy
may include a simulation model at the low level, a queueing model at the
intermediate level and an analytical model at the high level.

At each level, model calibration will be done using only the
performance information of models lower in the hierarchy. Since the model
information content increases as we go down the hierarchy, the information
obtained from lower level models should be sufficient to calibrate higher
level models. Furthermore, calibration may cause a degradation in accuracy.
Thus to achieve a certain degree of accuracy for a model, one must use models
of higher accuracy to calibrate it. Using only lower level models for cali-
bration ensures this, since accuracy increases as we go down the hierarchy.
The calibration procedures will obviously be tailored to the models involved
in the calibration.

When the hierarchy is being used to optimize an existing system,
the hierarchy can be constructed in a bottom-up fashion since the structural
information needed to construct the lower level models is available. How-
ever, when the hierarchy is to be used in the design of a system, this
information is not available and the construction may have to start at
intermediate levels of the hierarchy. For example, an analysis of queueing
models of various server configurations can be used in the initial stages to
decide the gross structure of the system. As the structure begins to emerge,

low-level models can be constructed to examine finer structural detail.

T

12

2.5 System Optimization Using the Performance Model Hierarchy

We now outline a procedure for cost-effective use of the perfor-
mance hierarchy in system optimization. We assume that the system is to be
optimized with respect to some objective function that has system perfor-
mance as a component.

Figure 2.1 is a flow chart depicting the optimization procedure.
The salient features of the procedure are:

1) The cost of the procedure is kept down by using a high-level model
for performance prediction in the iterative procedure that searches for the
local optimum.

2) However, the accuracy of the procedure is ensured by the validation
check on the high-level model after each prediction of the local optimum.
I1f the check fails, the more accurate low-level model is called at the
newly predicted optimum, and the extra information is used to re-calibrate
the high-level model in an experimental frame around the new point.

3) After the validation check has proved successful, an analysis is
conducted to determine the sensitivity of the objective function to changes
in the system parameters around the optimum. This is needed for two
reasons:

a) To locate the true optimum in the local region, since the

predictions of the high-level model are accurate only to a

certain degree.

b) To establish the relative importance of the various parameters

around the optimum.

At

e

i

——

e

R |

Calibration

Validation

Prediccion

———

Choose
initial
experimental
frame

13

4

Run LLM for an
initial set of
points in the
frame. Choose
initial reference
point

i s
i
|
!

- -

Run LLM at

predicted opcimum.
Choose it as the
new reference point.

| —

Y
Calibrate HIM

at the reference
point

!

Using HLM,
optimize the
system design

1s
HIM
calibrated at
the predicted
optimum
?

HLM: High-level Model

LIM: Low-level Model

Sensitivity
analysis

to examine
new frame?

Choose new
experimental

frame
——

FP-5744

Figure 2.1 System optimization procedure.

—

14

Too high a sensitivity to some parameter, may lead the analyst to decide
to explore another experimental frame.
In Chapter 4, we discuss such a procedure tailored to study a

specific system in detail, touching on aspects such as efficiency and error

bounds of the procedure.

15

CHAPTER 3

MODELS FOR A COMPLEX COMPUTER SYSTEM: THE IBM 360/91

3.1 Introduction

As a case-study of computer system design using the hierarchical
approach to system performance evaluation, we chose the CPU-memory sub-
system of the IBM System 360/Model 91 as a base. A hierarchy of models
was built to evaluate its performance, as a function of some chosen system
parameters. The hierarchy was then used to arrive at a system design, in
terms of the chosen parameters, that had the optimum cost/performance value.

In this chapter, we describe the system and the models in the hierarchy.

3.2 Description of the 360/91

The stated objective of the Model 91 was to attain a performance
greater by one or two orders of magnitude over the IBM 7090 [AND67a). Since
circuit and hardware technology advances could provide only a fourfold per-
formance increase, architectural advances were expected to provide the
rest of the performance improvement.

3.2.1 Pipelining and Parallelism in the 360/91

The outstanding feature of the Model 91 was the extensi-e use of
pipelining and parallelism throughout the system.

Pipelining is the technique by which the hardware along a processing
path is split up into a number of segments with temporary storage between
them. Then, when an instruction proceeds from one segment to the next, a
succeeding instruction is allowed to use the first segment, even though the
first instruction has only barely begun to be processed. Thus, the processing
rate is determined, not by the time to traverse the entire processing path,

but by the time spent in each segment (see Figure 3.1). The instruction

=
‘SUOTIONIJISUT IATSSIIONS usamlaq Juyuriadid jo uog Jea3sniil 1°¢ 2andy4g
2Gib-H4
b UOI1INISUT 3INdax3 Tl $SAPPY ¥ puniadQ 31013ud9 ‘apodraq T =5 ¥$531ppy-1 31013U39 TI

uuuuuu AATTR LT § Tl
31013u39 '3p023, €s522ppy-T 910I9V39 TI
_W/An////l/////z//// :o__usm.uu.up
 UO1INIISU]
2ss31ppv-1 u::ocooTn
N s
255320y UOHIINIISU] TI

ss31ppy 'puniadQ 31pIauant vouooTl Tssa1ppy-1 31013U29 TI

tunsay N\ //////////////////// - W////////////f/////////ﬂ W/%//////% vonsnsuL

Jwiy -

i

17

processing functiont of the 91 were split into the segments shown in Figure
3.2. Thus it is possible to enter instructions into this pipeline once every
clock cycle, this cycle being 60 nsec.

Parallelism involves the replication of often used hardware units,
as well as the possibility of simultaneous use of dissimilar hardware units
by different instructions. In the Model 91, the execution function is
divided between two separate units - for fixed and floating point instructions,
respectively. Further the floating point unit has two separate sub-units - an
add unit and a multiply/divide unit. Thus, instructions of these three classes
can be executed in parallel.

3.2.2 CPU~Memory Architecture of the Model 91

The organization of the system (see Figure 3.3) will be des-
cribed under the following division of functions:

1) The instruction unit

2) The execution units

3) The memory unit-

4) Buffering in the CPU.

3.2.2.1 The instruction unit

Instructions are pre-fetched from memory and stored in a 64 byte
instruction buffer. Pre~fetching buffers the instruction unit against
unpredictable memory delays. The instruction unit extracts instructions
from the instruction buffer at the rate of one every clock cycle. 1In
the next cycle, the instruction is decoded by the decoder. If it is a
fixed or a floating point instruction, it is dispatched to the appropriate
execution unit on the next cycle. Concurrently with the dispatching of

the decoded instruction, if the instruction needs an operand from memory

18

uy sa8e °¢ 2ang
*uoj3loni1jIsul 1931sf891-03-988103s jJujod Buyieoyy jeoydL3 ® JO UOFINIIX3d IY3 Uy 1S Z°¢€ T4
€S2v-43 s
i ey 3bnsoi5 puo uoiouny
uo1ndaxX3 SUOIIUNy HIUn T g i 4
tu1od g Uo119n415U] Jutog Buyooly o P | wEOIReG Son vononsisul
-6uyooi4 & Tl '
! suoiioung 3bnsoig puo
Hun 1051v0) 3bosois ulow
s v 310MpIoH ‘ uolInIaxXy
puniadQ Joy u_.ue:._.f.‘ h uoninoex3joj| sposaq | Buiooiy oy R—
- H1OM 11U fanssy apodag| vonansisug 6unoojy [voranssug ooy S
IOMPIDH Iy ANPwyiny uondax3 anow flwsuoyy vonansu] 3p023Q o} 5995y e
uoyndaxX3y uonnIax3 | puosadg PSS RO RS INS—— I " oposag | uoriannsul PR pioe
uoIdInssuy o) ﬂccsgo Uabuoom e vt
i $2800v v:.:u.io -
i Pun1Sd)y 91013uU39

.328.

joaseul
3wy nsog

19

‘uorjeziuedio 16/09¢ wa3IsAS ¢°¢ 2aIndyTq

bGLb -Yd
¢ 2wol .ll— sl R T e el U A Pyt Rl iy B et
“ 3 I PAL LR |“ “I 13woi4
" f [I —
|
| nwn) “ iun “ -
| uoIN23X3 1 uolIN3ax3y I
i 1104 Bunibo) 4 i Ju10g Paxy ! Hun uodnisux
“ | “ \ I T =
_ (8) | | 360101G 0} §NQ SSIPPY
(91 s19))ng 1 - =zz5 |-
. siapng | UON0I2d0 I (9) (9) | Ao i ~
— e julod4 — — s194)ng s193))ng | siajng
i F 0 Butjo0]4 i pubsadp | uonoiadp (v) Y2134
| 6 \iod | g 1uiog | (€) (€) | ssapng e i
u1100(4 I | paxg paxi4 | siung | SIUNG | y55u0) —
I b . . | 0Q | ssaPpY | 5bosorg L)
| i [210)G 21015 ss94ng —_—
: i i : 13biog ———
| e g | _ _ youoig T
i i }
i t L) 1 | “ —lly A
| _ _ ;
o e e (R T s i s s
- —l PSR AR - | —l-l.lllLllll..n.llllllll.lnll O, UG R gp——
aboiois wosy ojoQ aboioyg 0} DjoQg abosoig 04 sS31ppY

sa|npow abosoyg

TPy

Eoagesiiio fon o 2 s

20

the address parameters (index register, base register and displacement) are
combined to compute the operand address, which is then sent to memory on
the next cycle, as a fetch request.

The instruction unit also executes branch instructions after
decoding them. Unconditional branches cause a switch in the instruction
stream, and instruction fetching is done from the target of the branch.

If a conditional branch is encountered, and the data on which the branch
decision depends has not yet been computed, the CPU enters ''conditional
mode'. Decoding and issuing of instructions continue along the path that
reflects the best guess as to the decision of the branch. When the branch
is finally decided, these instructions will be cancelled if the guess was
wrong, and activated for execution if the guess was right. For most
conditional branches, the guess is that it will not be taken. If, however,
the target of the branch is back along the stream within 64 bytes of the
location of the branch, i.e., for program loops that fit in the instruction
buffer, the CPU enters'"loop-mode'" and assumes that the branch will be taken.
For further iterations of this program loop, the instructions will be held
in the instruction buffer, and need not be fetched from memory. To further
reduce the performance degradation due to a wrong guess, 16 bytes of instruc-
tion words are fetched from the alternate branch path and stored in a
separate buffer.

3.2.2.2 The execution units

As described earlier, concurrency of execution is increased by
having separate units for executing fixed and floating point instructions.

a) The fixed point unit: Within the fixed point unit, execution

proceeds serially, one instruction at a time. Many of the instructions

require only one clock cycle of execution time.

i i o o, b s s i SRRR——

iy s e

21

b) The floating point unit (see Figure 3.4) is subdivided, for

further concurrency, into an add unit and a multiply/divide unit [AND67b].
The add unit is pipelined to start an add operation every cycle, and
requires two cycles to complete an operation. The multiply unit uses a
carry-save adder tree to perform a multiply in three cycles, and an
iterative Newton-Raphson technique to perform a divide in 12 cycles. An

internal bus, the Common Data Bus, links these units, using the Tomasulo

algorithm [TOM67]. It correctly sequences dependent streams of instructionms,

but permits those which are independent to be executed out of order.

3.2.2.3 The memory unit

Core memory with an access time of 600 nsec and a cycle time
of 720 nsec was used in the 360/91. As the CPU clock cycle is 60 nsec,
there is a wide disparity between the memory bandwidth and the projected
CPU bandwidth., To increase the effective bandwidth of the memory unit, a
number of features were incorporated:

a) The memory was l6-way interleaved, i.e., it was split into
16 separate modules or banks, with addresses interleaved so that consecu-
tive addresses reside in consecutively numbered banks. Each bank can be
cycled independently, so that, at any given time, more than one bank may
be performing an access.

b) Incoming references from the CPU are buffered, if they
cannot be honored for any reason such as a bank conflict, unavailability
of the data to be stored, or data dependency on a previous, uncompleted

reference. Thus requests can be sent to the memory unit at the rate of

one per CPU cycle.

s ins i

suoyjezyuesdio Jyun juyod Suyieoyy 9yl #°¢ 2andyg

~
o~ SGLb-Y3 !
i (802) sng 0joQ VoW WO) [
—t— F——
Hnnsay Hnsay
19ppV
apimg/LidlinN
10J4u0) | 222005 | 60} | wurs |Boy
1014u0) | @21n0g | B0y | yuis | 6oy SU01§DIS :o_.wo.ﬁ_o.mhm 1031u0) | 321n05 | 60y | yuig | 6oy
1014u0) [291n0g | 6o) | yuis |60y UOIDALIS Y 103190) | 993n0g | Bog | yurs | Boy
8ad
sng Y4
sng 8714
L (80S)
Z s19j)ng ojoQ sbo) [10153v0)
€ 21015
»{ 13p02aQ | Ly P
F —+ 4 L 4 + 4 —
o 1
2 (Y¥14) ss95169y 6oy | 5118 2
L | ksn
v jujod buyi00}4 8 (SO14)wooIS B
d Pups3dO s v (G14) s494§n8
juiod s Ju104 buyyooly
Bunoor4 9
d sng obosois

tuny voronasul

23

c) A check is made to see if an incoming fetch reference refers
to the same location as a previous reference that is currently being
serviced. If a match occurs, the second reference can be honored almost
at the same time that the data for the first reference is finally avail-
able. This is called the multi-access feature [BOL67].

3.2.2.4 Buffering in the CPU

Buffers in the system (see Figure 3.3) provide queueing which
smooths the instruction flow. They allow initial segments of the pipeline
to proceed with processing despite unpredictable delays down the line due
to busy resources, data dependencies or memory accesses. As described
earlier, the instruction buffer holds pre-fetched instructions for decoding,
and also holds small program loops in loop-mode. In the memory unit,
buffers are provided to hold references delayed for any of a number of
reasons. Branch target buffers hold instructions fetched from the alter-
nate path of a two-way conditional branch that has not yet been decided.

In the execution units, operation buffers hold decoded instructions
sent to them by the instruction unit. Operand fetch buffers provide storage
into which the memory returns operands, to be used by the execution units
when necessary. Operand store buffers hold operands sent by the CPU until
they are stored in memory.

Thus buffering plays an important role in ensuring autonomous

execution in the various functional units.

3.3 Overview of the Model Hierarchy for the System

We now outline the hierarchy of models used in the performance

analysis of the case-study system. The hierarchy consist of two levels:

e

b) An analytical model at the high level. !

a) A control stream model at the low level

The control stream model is a simulation model, that is driven
by a control stream derived from program traces. It is a hybrid between
a structural and a functional model (see Sec. 2.3.1), in that its resource
configuration, while resembling that of the real system, is an approxi-
mation of it. As such it has reasonably high structural validity, yields
accurate and detailed information, but is computationally demanding. It
should be pointed out that large studies of this kind should use a model
of even greater structural validity at the lowest level, i.e., without
some of the approximations that were incorporated in the control stream
model used in this research. However, for this study, the control stream
model is taken as the structural model for the system.

The analytical model is a linear, first-order regression
equation, linking system performance, i.e., instruction throughput, with
the system parameters. It is predictively valid only in the limited region

of its calibration, yields values of only one performance measure, but is

trivial to compute.

3.4 A Control Stream Model of the System

In this section, we describe a control stream model of the IBM
360/91 CPU-memory system. This model is the low level in the two level
hierarchy of models used to study the system. Consequently its complexity
and computation time are significant. To predict system performance using
the model, a simulator of the model has to be built, and driven by control

streams representative of programs in a desired enviromment. The model

can be used to provide a wide variety of performance statistics of the system.

K

Bar e ot

T g

25

The model described in this section is a simplification of an
earlier control stream model of the system, that is described in [KUM76a]
and [KUM76b]. The assumptions about the system that are reflected in this
model, are explained in Secs 3.4.9.

3.4.1 The Control Stream Concept

The simulator of a control stream model is not intended to per-
form any real computation. The sole purpose of the model is to provide
timing and resource usage statistics for typical system usage. Recognition
of this fact enables a significant reduction in model complexity, by the
introduction of the concept of a control stream.

In the real system, an instruction, while it is being fetched
from memory and processed by the CPU, traverses a flow path in the system.
This flow path through the system is different for different types of
instructions. Moreover, in concurrent CPU~-memory systems, the data that
is needed by an instruction will have its own independent flow path
through the system. Typically, both the instruction and its data traverse
their flow paths simultaneously.

The model of the system consists of resources which correspond
in some fashion to the resources comprising the real system. In the model,
a unit of traffic, or process, is generated corresponding to the starting
of an instruction along its flow path in the real system. However, no
distinction is made in the model between the instruction flow and the data
flow caused by that imstruction in the real system. The two taken together
form the control flow of that instruction and are reflected in the flow path
of the corresponding process in the model. Thus the instruction and data

streams in the real system are replaced by a control stream in the model.

26

The traffic for a simulator of the model, is derived from a
program execution trace by one of the methods to be discussed in Sec.
3.4.3. During simulation, however, no attention is paid to the actual data
used or produced by the program. Thus the model will be concerned only
with the data flow path (inasmuch as it is a portion of the control flow 3
path) and not with the data itself. Since only timing statistics are
important, the processing of a traffic unit by a resource in the model
consists solely of occupancy of the resource by the traffic unit for the

characteristic period of time for that resource in the real system.

3.4.2 Assignment of Logical Resources in the Model

The model associates a logical resource with combinations of
various steps in the execution sequence of an instruction. The processing
time of each resource is fixed by the combination of execution steps that
it represents. Each of these resources can process only one unit of traffic
at a time. Thus, the division of the execution sequence and assignment to
associated resources is made only as fine as needed to describe the degree
of concurrency possible in the system. For example, if there are two
distinct consecutive steps in the execution sequence which can never be
simultaneously in progress for two different instructions, and if the output
of the first step is the only input to the second step and to no other step,
then a single resource in the model is assigned to the combination of the
steps.

A consequence of this technique is that the model will have no
more resources than required to reflect system timing and dependency

accurately. This assignment reduces the model complexity significantly

over one which assigns a resource to each logical execution step. For

27

example, a system with no concurrency, i.e., no instruction look-ahead
and no execution unit pipelining or parallelism, is modelled as a single
resource with variable, but deterministic, processing time.

3.4.3 Control Stream Generation

To exercise the simulator of the model, a control stream to be
processed by the simulator must be generated. Since the simulator does
not perform any stream computations, each stream instruction need only be
sufficiently described so as to enable the simulator to determine its
dynamic flow. This information would minimally consist of:

1) The static control flow path of the instruction, i.e., the
resources needed to process the instruction in the order that they are
needed. For example, in a concurrent system, some of the resources needed
by an instruction may be the instruction decoder, a particular execution
unit, a memory location from which an operand is to be fetched and busses to
transmit the operands to the execution unit,

2) The dependency of this instruction on instructions preceding it
in the stream. This information is necessary for the simulator to set up
the interlocks to ensure correct sequencing of the stream. The execution
of a program on a concurrent processor gives rise to three kinds of
dependencies [TJA70]:

a) Data dependency: this occurs when two instructions reference
the same operand location. In a concurrent system, they have to be processed

so that they reference that location in the correct sequence as dictated

by the program.

|
1
1
|

b) Procedural dependency: this occurs when there is a

conditional branch instruction in the stream. Execution beyond the
branch cannot proceed until the branch decision is made and one of two
paths is chosen for execution.

c) Operational dependency: this is caused by two instructions

attempting to use a processor resource at the same time. This results in
a conflict that has to be resolved by some priority mechanism.

Thus, for a control stream to be executed by the simulator of
the model of a concurrent system, the data dependency information for an
instruction would point to the most recent instructions that read from
or wrote into the operand locations referenced by this instruction. The
procedural ‘dependency information would point to the most recent condi-
tional branch instruction which must be executed before this instruction
is executed. Note that the control stream represents a single execution
of a single program. Thus all activity following branches is actually
known by the simulator a priori. Execution is merely delayed until such
time as the branch would have been completed in the real system. The
operational dependency of the instruction is completely specified by its
static control flow path through the resources of the system.

3.4.3.1 Control stream generation from program traces

The instruction execution trace of a real program is gathered
while it executes on the real system that is to be modelled, or a compa-
tible system. Each instruction in the trace is then mapped into a contro
stream instruction, specified by the set of parameters needed to describe

it to the simulator. The static control flow path of each instruction is

28

1

entirely determined by the types of operands that it uses and the operations

29

that it performs on them. Data dependency information is gathered from

a simple forward scan of the trace by maintaining a list of operands

used and the most recent instructions that used them. This list need only
keep track of dependencies on a certain number of most recent instructions,
on the grounds that instructions further back would have completed
execution and will not delay instructions far ahead in the stream. For
every instruction, the data dependency information is then derived by
scanning the list for the operands used by this instruction and specifying
the most recent instructions to use those operands. The list is then
updated. Data dependency interlocks built into the simulator use this

information to prevent improper out-of-sequence usage of operands.

Procedural dependency is specified by the occurrence of conditional
branches in the stream, and their ''data dependencies' - thus, no extra
scanning of the trace is necessary to gather this information. Operational
dependency is specified by the static control flow paths of the instruc-
tions in the stream - here too, no extra scanning of the trace is

necessary.

3.4.3.2 Synthetic control stream generation

To synthesize a control stream, a comprehensive, yet tractable,
model of the workload has to be used as the base. One approach to modelling
the workload is by statistical means. The workload of programs in a given
environment can be characterized by a number of statistical distributioms.
The information obtainable from these distributions must be sufficient to
derive the main attributes of control streams described earlier. For
example, resource demands of the control stream can be derived from an

instruction frequency distribution. Data dependency information for

{
|
{

-

30

instructions in the control stream can be derived from a distribution of
the number of intervening instructions between two instructions accessing
the same operands.

Procedural dependency arises from the occurrence of algorithmic
control constructs in programs. Almost all the branch instructions in
programs can be attributed to the occurrence of one of the following high
level language features: conditional constructs (if-then-else and case
statements), iterative constructs (for and while statements) and proce-
dures (calls and returns). Thus we feel that the procedural dependency
information for a control stream is best derived from distributions des-
cribing the occurrence of high level language features in that class of
programs. For example, iterative constructs can be described by distri-
butions of the iteration count and the length of the iteration (in
instructions).

We now outline a procedure for stream generation using these
statistical distributions. The instruction frequency distribution is
sampled, to decide the resource usage pattern of the next instruction in
the stream. If it is an instruction that can have a data dependency,
data dependency information is generated for it by sampling the data
dependency distributions. If it is a branch instruction, a high level
language construct will be generated, depending on the type of branch at

hand. For example, a branch-on-counter-condition instruction, such as

BXLE or BXH on the IBM 360, is most often used with for-loops by computers,

and will trigger the generation of a for~loop construct in this scheme.
This will include generation of an iteration count and the length of the

iteration (in instructions) from the corresponding distributions. A

31

procedure similar to the above is then followed for generating the
instructions in the construct. When the entire construct has been
generated, the outer procedure for generating the main stream is continued.
The stream length is chosen by sampling the program length distribution

(in instructions), and the generation procedure is stopped when this length
has been reached.

The above procedure follows a first order approximation since it
assumes that there is no correlation between the occurrence of successive
instructions in programs. More refined procedures would replace the instruc-
tion frequency distribution by higher order distributions that describe the
occurrence of instruction pairs, triplets, etc.

3.4.4 Terminology Used in the Model Description

The simulator of the model was implemented in SIMULA [BIR73].
Consequently, much SIMULA terminology has been used in the description of
the model that follows. The basic time unit of the model is one clock cycle
of the CPU. The units of traffic flowing through the system are processes -
these are the dynamic entities of the simulation. A resource models some
consecutive stages in the execution process, as described in Sec. 3.3.2.

A buffer has the same function in the model as in the system - temporary
storage for a process while it waits for a certain event to occur.

When a process needs a resource, it gets control of the resource,
occupies it for the characteristic time of that resource and then relin-
quishes control of the resource. If the resource is not available, i.e.,
it is occupied by another process, the process waits, either in a buffer or,
in the resource that it is currently occupying, until that resource is freed

and this process has the highest priority among those waiting to use that

resource. As a consequence, a process frees a resource that it is occupying,

ik o

i e

32

only after it has acquired the resource that it needs next, or after
entering a buffer where it will wait for its next resource.
To model distinctive sections of the control flow path of an

instruction, different processes are used. Thus an instruction process

models the flow through the instruction unit and the execution units. An

operand process models the independent flow of an operand that the

instruction needs. A memref process models the flow through the memory unit

for any memory reference - an instruction fetch, an operand fetch or an
operand store. Thus the control flow of a single instruction may involve
the creation and termination of many processes, depending on its path.
Appropriate synchronization mechanisms have to be provided for communication
among all these processes. Further, the entity in the real system that a
process models may change with time. Thus an operand fetch from memory
involves the following sequence of actions:

a) The instruction process that needs the operand creates an
operand process to model the computation and the transfer of the operand
address to memory. This operand process may undergo delays due to resource
conflicts, data dependency, etc. The instruction process, in the meantime,
traverses its control flow path concurrently.

b) The operand process creates a memref process to model the
memory access and waits for it to return.

c) The memref process may undergo delays due to memory conflicts
etc. On completing the memory access, the memref process signals the parent
operand process and is terminated.

d) The operand process now models the actual operand to be trans-
ferred to the execution unit. After doing so, it signals the parent

instruction process and is terminated.

33

In the description of the model, a process and the type of entity
that it models in the real system will be used interchangeably. For
example, "instruction" will be used in place of "instruction process,"
except when ambiguity may result. Further, in place of the pseudo-processing
that a model resource does, the function accomplished by the corresponding
resource in the real system is quoted for descriptive purposes. For example,
an instruction process will be described as being ''decoded in one cycle,"
whereas all that occurs in a simulation of the model is that the process
occupies the resource modeling the decoder in the real system, for one
cycle. In a similar manner, an instruction process will be quoted as
"fetching an operand from memory'" to denote the memory operand fetch sequence
described earlier.

3.4.5 Resources and Buffers in the Model

1) 1IBUF - the instruction buffer: holds pre-fetched instructioms.

2) IEX - the instruction extractor resource: extracts the next instruction
from IBUF in 1 cycle

3) IDEC - the instruction decoder resource: decodes the instruction sent

to it by IEX in 1 cycle.

4) FXIU - the fixed point unit instruction decoder resource: decodes fixed
point instructions in 1 cycle and executes fixed point loads and
stores.

5) FXEU - the fixed point execution unit resource: executes fixed point
computational instructions. Most of the instructions take

1 cycle, with multiplies and divides executing in 11 and 36

cycles respectively [RIS72].

34
6) FLIU - the floating point unit instruction decoder resource: decodes
floating point unit instructions in 1 cycle and executes floating

point loads and stores.

7) FLADl and FLAD2 together constitute the floating point unit add resource:

Each represents one segment of a 2-segment pipeline that executes
floating point add instructions in 2 cycles, but can start a new
add operation every cycle.

8) FIMD - the floating point multiply/divide resource: executes floating
point multiply and divide instructions in 3 and 12 cycles
respectively.

9) The memory bank resources: each holds a memory reference process for a
number of cycles equal to the memory cycle time. The number of
banks is a model parameter.'

Figure 3.5 shows the interconnection of these resources and
buffers. The figure reflects the approximations made by the model to be
discussed in Sec. 3.4.9. Thus no busses are shown because, even though the
nominal bus transfer time of 1 cycle is included in the control flow, the
model assumes that there is never any contention for the use of these busses.
This is true of the operand address generation resource as well. The path
for branch instructions out of IDEC - indicates their termination after
execution, while the path for "aborted instructions'" out of IBUF, indicates
the termination for instructions that were not decoded because they followed
a branch that was taken.

3.4.6 Control Flow of an Instruction Process

The instruction process models the control flow of an instruction
through the instruction and execution units. We now describe the sequence of

events in the life of an instruction process. The description is not

P - . .

|

MEMORY UNIT
|r —-——
| Memory Banks =
= ol o :
1 | Jf {
{ Y 4 A |
| SO, P — - of
Instructions
e il o] INSTRUCTION UNIT
r — a— W e ﬂ
| * |
|
: e Aborted :
i Instructions
|
} Operand) |
1 Address IEX !
{ | ceneration Fixed Point
Floating | T Memory OP.rands
Point | IDEC !
Memory : |
Operands 1 Branches :
D - SECRRE |
lr— ﬁ' —1| r—— -t 1
| |
| From | |From fixed i
! floating | |point registers |
‘—'—"-0 point ! | o——i v |
[registers| ; [j :
|
Floating S { ! i :
Point | : :
Stores |
L | ! !
‘ : | Fixed Point
:) { N WK i : | i | Stores
Il
’ FLADL FLO : : FXEV :
|
! FLAD2 : : '
|
' | |
{ i ’
I Y ! : Y
i To floating : | To fixed
L point registers | i point registers
- —— -d T ———— |
FLOATING POINT FIXED POINT
UNIT UNIT FP-574%

Figure 3.5 Resource configuration

in the control stream model.

25

TP T

e o i i i,

36

complete in all respects, for lack of space. Detailed documentation is
provided in the listing of the simulator program in Appendix B.

3.4.6.1 The flow common to all instructions

1) a) 1If the CPU is not in loop-mode, the instruction process starts
by making a memory reference to model the instruction fetch, i.e., it invokes
a memref process and waits for it to return from memory. When the memref
is done, the instruction enters the instruction buffer IBUF in its proper
place, i.e., that which maintains the program instruction sequence.

b) If the CPU is in loop~mode, no instruction fetch is necessary
and the process starts with the instruction in IBUF itself.

2) When it has reached the head of the queue of instructions in
IBUF, the instruction acquires the instruction extractor resource and leaves
IBUF. It then schedules a new instruction process to model the prefetch into
the vacant slot in IBUF. After 1 cycle in IEX, it acquires the decoder
IDEC, releases IEX and is decoded in 1 cycle.

3) At this stage, if any of the address registers needed for an
operand address computation by the instruction, is unavailable, i.e., has
not yet been updated by a previous, as yet uncompleted instruction, this
instruction waits in IDEC, delaying the instruction stream behind it.

4) 1f the instruction is not a branch, and needs an operand to be
fetched from memory, an operand process is created now. This process will
model the operand fetch from memory, and will return independently to the
execution unit to merge its control flow with that of the parent instruction
process.,

The above steps are common for all instruction processes. The
control flow of the process from this step on depends on the type of

instruction that the process models.

T e

37

3.4.6.2 Branch instructions

a) When the CPU is not in loop~mode:

a.l) If the instruction is an unconditional branch, the
instruction stream has to be switched to the branch target. The branch
instruction process causes the termination of all the instructions in IBUF
and all outstanding instruction fetches (see the '"aborted instructions"
path in Figure 3.5.). It then initiates new instruction fetches from the
target, and is then terminated.

a.2) If the instruction is a conditional branch, whose
decision depends on the value of the condition code, or a counting register,
there may be a delay before the branch decision is made. Since the system,

in this case, assumes that the branch will not be taken, in the model,

decoding continues in conditional mode. However, since the branch decision
is already known to the simulator, it decodes and issues the actual instru
tions following the branch in the control stream only if the branch will
not be taken and dummy instruction processes, if it will. Later, when the
branch decision is '"made," the conditionally forwarded instructions will be
activated or the dummy instructions cancelled, respectively. In the latter
case, IBUF is also emptied and new fetches from the branch target are initiated.
The branch instruction process is then terminated.

In both of the above cases, if the branch is taken and the target
is back along the instruction stream, at a distance from the branch location
that is smaller than the size of IBUF, the CPU is switched to loop~mode.

b) When the CPU is in loop-mode

b.1) If the instruction is an unconditional branch, the stream

has to be switched to the branch target, but no new fetches are necessary.

V.

T

38

All that occurs is that the instruction at the target, which is already

in IBUF, is scheduled next for decoding. The branch instruction process
is then terminated.

b.2) For conditional branches, conditional mode is set until the
branch decision is made. However, the policy for conditional decoding of
instructions is reversed from that of the non-loop-mode case. The system ;
now assumes that the branch will be taken. Thus, in the model, actual
instructions from the target of the branch in IBUF are sent for decoding if
the branch will be taken, and dummy instruction processes, if it will not. :
When the branch decision is '"made,'" the conditionally forwarded instructions

will be activated, or the dummy instructions cancelled, respectively. In the

latter case, IBUF is emptied, loop-mode is turned off and new fetches from
the sequential path following the loop are initiated. The branch instruction
process is then terminated.

3.4.6.3 Fixed point instructions

1) After passing through the instruction unit as described in
Sec. 3.4.6.1, a fixed point instruction process is transferred in one cycle
to the fixed point execution unit. If it is a conditionally issued instruc-
tion, it cannot proceed for execution until the conditional branch that set

conditional mode has been decided.

2) When the instruction reaches the head of the queue of instructions
in this unit, it is ready for execution. Its subsequent control flow depends

both on its type and the type of architecture that is being modelled for the

fixed point unit. The latter is an overall model parameter and can take one ﬁ

of three values:

TR T R T S R

39

a) Serial: 1In this architecture only one instruction may be in
process at a given time in the entire fixed point unit. 'Thus the instruction
gets control of the fixed point decoder FXIU, only after the previous fixed
point instruction has completed execution in the unit and transferred its
result to the appropriate destination.

b) Pipelined: In this architecture, the decoding in FXIU and the
execution in the execution unit FXEU, are pipelined. Thus, an instruction
can be decoded in FXIU, while the previous instruction is still using FXEU.
If the second instruction is a load or a store, and has its operand available,
it can proceed simultaneously and even finish before the first. 1If its
operand is not available, it waits in FXIU until it is, thus delaying sub-
sequent instructions. If the second instruction is not a load or a store,
and needs the FXEU to execute, it has to wait in FXIU, until the first has
finished execution. Further, when the second instruction needs the result
of the first instruction as an operand, it obtains that result from the
appropriate location, after the first instruction has transferred it there.

c¢) Dataflow: This architectural type models the floating point
unit architecture of the 360/91 as designed by Tomasulo [TOM67], and the
architecture discussed by Dennis [DEN74]. The FXIU, after decoding an
instructioﬁ, executes it if it is a load or store. If it is neither, the
FXIU deposits it in a buffer, that creates the effect of a number of virtual

execution units. These are called reservation stations in [TOM67]. The

FXIU is now free to decode subsequent instructionms.
The virtual units acquire control over FXEU (the real execution
unit) in the order in which they become ready for execution, i.e., when

they have received all their operands. Thus instructions that do not depend

on one another can be executed out of sequence. Further, when an instruction

40

is completed and has a result to be transferred, it broadcasts the results
to all the virtual units that need the operand in the same cycle. This
eliminates a number of redundant operand transfers.

3) The instruction, after it gains control of FXIU, is decoded in
1 cycle. 1If it needs two operands, the instruction process itself models the
control flow of one of these - the register operand. If the other is a memory
operand, the operand process to model the fetch hias already been created (see
Sec. 3.3.6.1). 1If the other is a register operand, or if the instruction
needs only a single register operand, the instruction now creates an operand
process to model the control flow of that register operand.

If the register operand that this process now models is available, its
transfer to the execution unit or to the destination of a load or store instruc-
tion, takes one cycle. If any operand is not available, the action taken
depends on the type of architecture being modelled, as described earlier.

4) 1f it is a load, the instruction has now been completed. If it
is a store, a memref process is created to model the storing of the operand
in memory, at the end of which the instruction has been completed. If it is
neither a load nor a store, the process occupies FXEU for the required
execution time of the instruction that it is modelling. At the end of its
execution it transfers its result to the appropriate destination(s) in one cycle.

The instruction process is then terminated.

3.4.6.4 Floating point instructions

The control flows for floating point instructions are very similar
to those for fixed point instructions.

1) A floating point instruction is transferred from the instruction

unit to the floating point unit in one cycle. If it has been conditionally

k.
i
i
E

41

issued, it cannot proceed for execution until the branch that set conditional
mode has been decided. When it reaches the head of the queue of instructions
in this unit, it is ready to be decoded by the floating point decoder, FLIU.
2) Its subsequent control flow depends on its type and the type of
architecture being modelled. The three types of architectures are analogous
to the three types of fixed point unit architectures. However, there are
two execution units in the floating point unit; the floating point add unit
FLAD and the floating point multiply/divide unit FIMD. With this difference,
the three types are:

a) Serial: 40nly one floating point instruction may be in process
in the entire unit at any given time. Thus the FLIU can decode the next
instruction only after the previous instruction has completed execution,
and transferred its results to the appropriate destination.

b) Pipelined: 1In this architecture, decoding and execution are
pipelined. Thus decoding in the FLIU, an add in the FLAD and a multiply
or di-.¢ in the FLMD can proceed simultaneously. Loads and stores, which
are executed in the FLIU itself, may thus finish even before previous add or
multiply instructions, if their operands are available. 1If not, they hold
the FLIU, until the operands do become available. Adds and multiplies
decoded in FLIU, wait until their respective units are free before releasing the
FLIU. Results are transferred to their destinations, from where following
instructions can obtain them.

c) Dataflow: Both FLAD and FIMD have their sets of reservation
stations, which act as virtual execution units. The FLIU executes loads
and stores and deposits other instructions in the appropriate virtual
execution units. It can thus decode instructions at the rate of one every

cycle. 1Instructions in virtual execution units acquire the physical units,

TR

42

in the order in which they become ready for execution. After execution,

the result is transferred in one cycle to all the virtual units that need it.
3) After being decoded by the FLIU in one cycle, the instruction

obtains its operands and completes execution in the same manner as fixed

point instructions described in Sec. 3.3.6.3.

3.4.7 Control Flow of an Operand Process

The operand process models the control flow of operand fetches
which proceed in parallel with the control flow of the main instruction.

Since fixed point and floating point operand processes have analogous

control flows in their respective units, we present a common description of ;

both types.

If the process models a memory operand fetch, it has the memory
address computed in one cycle and is transferred to the memory unit in
another. In the memory unit, it waits until the most recent instruction
that needed that operand, for reading or updating, has used it. When this
data dependency has been resolved, it creates a memref process to model the
actual fetch of the operand from memory. When the memref process signals
this process on return, the operand has been fetched from memory and can be
transferred to its destination. The actual transfer depends on the type of

architecture being modelled. 1In serial and pipelined architectures, the

operand waits until the instruction that needs it has acquired the resources
necessary for its execution. 1In a dataflow architecture, the operand waits

until the instruction that needs it has acquired a virtual execution unit. :
In all the above cases it is then transferred to its destination, an

execution unit or a register, in one cycle.

L e | .

T T T E Ty

43

If the process models a register operand fetch, its control flow
again depends on the type of architecture being modelled. 1In serial and
pipelined architectures, it waits until the most recent instruction that
needed that operand, for reading or updating, has used it. When this data
dependency has been resolved, the operand is transferred to its destination -
an execution unit or a register - in one cycle. In a dataflow architecture,
if the operand is available for use, it is transferred in one cycle to its
destination. If not, it will be transferred automatically to the virtual
execution unit, when the most recent instruction that needed to update it
has been completed. Thus the operand process need not wait for data
dependency to be resolved.

At this stage, for both register and memory operands, the process
signals its parent instruction that the operand has been delivered and is
terminated.

3.4.8 Control Flow of a Memref Process

The memref process models the control flow of any memory reference
through the memory unit. When it is invoked, the address of the memory
reference has already been transmitted to the memory unit. The memref process
waits until all previous references to the memory bank that is addressed by
this process, have been completed. When the bank is available, this process
occupies it for a number of cycles equal to the memory access time being
modelled. It then signals the parent process that invoked it that the access
is complete. After this, it continues to occupy the bank until a number of
cycles equal to one memory cycle time have passed since its initiation.

It then releases the bank, and is terminated.

()

44

3.4.9 Approximations Made in the Model

A number of approximations were made in building the model, in
order to keep it tractable. Further, experience gained from the more
detailed model in [KUM76a] indicated that a number of features had a
negligible effect on the system performance. We now list some of these
approximations.

1) Except for the instruction buffer, all the system buffers are
assumed to be unbounded in size. This is reflected in the description of
the model, where processes are never delayed because of buffer overflow.
Evidence from the more detailed model indicates that buffer overflows rarely
occur in the system as the buffer sizes in the original system are generally
adequate, yet not costly. However, keeping the instruction buffer bounded
is the most effective way of keeping the instruction supply rate in the
model close enough to that in the system.

2) Conflicts for busses that transfer data are neglected. 1In
effect, the model assumes an unbounded number of copies of all busses.
Since bus conflicts play a very small role in performance degradation, this
is not a very serious approximation.

3) 1In the system, each instruction fetch returns a double word
(8 bytes) from memory. This double word can contain from one to four
instructions. In the model, a separate fetch is needed for every single
instruction. This is a very serious approximation, and was made solely to
keep some higher level models tractable. We have not examined the effects
of this approximation very carefully.

4) 1In the system, when a conditional branch is decoded, two double
words are fetched from the branch target, as a hedge against an incorrect

branch prediction. In the model, this feature is absent.

o

5) 1In the system, the memory unit checks the address of each
incoming fetch request against the addresses of ongoing fetches or stores.
If there is a match, the second fetch can be honored almost simultaneously
with the previous reference to the same location. This is called the

multi-access feature [BOL67]. In the model, this feature is absent. This

assumption reflects evidence from the more detailed model [KUM76a] that
multi-access occurs fairly infrequently and does not affect performance to
a considerable extent.

In view of the above approximations, and the lack of evaluation
of their impact on the accuracy of model predictions,it would be more

realistic to say that the system being modelled is a system very much like

45

the IBM 360/91.

3.4.10 System and Model Parameters

To study system performance as a function of various system
architectural parameters, a number of these system parameters were
parameterized in the control stream model as well. The model parameters

that can be explicitly specified are:

1) mc - the memory cycle time (in CPU clock cycles). For simplicity,

the memory access time is assumed to be 5/6 of the memory
cycle time.

2) mb ~ the number of memory banks, i.e., the depth of memory
interleaving.

3) ib - the size of the instruction buffer IBUF.

4) fx ~ the fixed point unit architecture. The values associated
with the three types described in Sec. 3.3.6.3 are:
Serial il

Pipelined :2
Dataflow :3

e

ol

e

5) f4 - the floating point unit architecture with the same
association of values with types as for fx.

6) 4m - the loop-mode feature. The value assigned to 4m is:
0 - if no loop-mode capability exists.
1 - if the loop-mode capability exists.

It should be noted that the bandwidth of each of the major units -
the instruction unit, the memory unit, the fixed point unit and the floating
point unit - is affected by at least one parameter in the above set.
Further, the values associated with the execution unit architecture types,
increase in the expected direction of increase of bandwidth.

Besides these, a number of other architectural parameters can be
varied by simple changes to the simulator program. These include execution
times of various resources, priority mechanisms for scheduling various
resources, etc.

3.4.11 Performance Measurements Using the Model

As discussed in>the previous sections, the model is used in the
construction of a simulator, which is driven by program execution traces.

A wide variety of performance statistics can be gathered during the simu-
lation.

For example, suppose this model is to be used to calibrate a
queueing network model of the system. From a knowledge of what the servers
comprising the queueing model accomplish, different points in the control
flow paths of the processes of the control stream model can be identified as
the points of entry and departure of these servers. At these points,
statistics can be gathered regarding server arrival and departure rates

and counts. These statistics can be used to calibrate the queueing model.

47

£ If an analytical model is to be built relating some overall per-

iy

formance measure such as system throughput or memory utilization, to the
system parameters, the appropriate performance statistics can easily be |

gathered from simulations of the control stream model, for the required

settings of the system parameters.

The performance measure that was most frequently used in the %
study, is the average system instruction throughput. This is defined 3
as the average number of instructions that were completed per CPU cycle,

over the run of the program. This was approximated in the model, by the !

average number of instruction processes that terminated normally per

simulator cycle. Normal termination excludes those instruction processes

that were flushed from the system following a branch, as well as those
dummy instruction processes that were conditionally decoded following a
wrongly predicted corditional branch. This throughput is measured very
simply in the model by dividing the total number of instruction processes
that terminated normally, by the number of simulator cycles needed to

execute the program trace.

3.5 An Analytical Performance Model of the System

In this section we will describe an analytical performance model

of the system chosen for study. The model attempts to describe the per-

e et S e by i i N e W e i

formance measure of greatest interest - system instruction throughput =~ as
a function of the system parameters listed in Sec. 3.4.10. Statistical

regression techniques are used to estimate this function. For an excellent i
introduction to regression theory, see [DRA66]. [TSA72] is an illuminating

example of the application of regression modelling to computer system

performance evaluation.

48

3.5.1 1Introduction to Regression Theory

Analytical model building by regression analysis involves an
iterative search for a mathematical expression relating a dependent variable
Y, called the response, to a set of independent variables Xl, Xy eake Xn’
called the factors,on the basis of observed data. Since the functional
relationship may, in general, be complex, a summarization of the relation-
ship is achieved by:

a) Selecting a small but relevant subset of the independent
variables for inclusion in the expression.

b) Choosing a simple but plausible mathematical form to express
the relationship. A common form to choose is the linear form, in which the
expression is linear in its parameters. A further simplification is the
first-order model, in which the highest power of any factor that occurs in
the expression is one.

3.5.1.1 Linear regression models

In theory, the entire set of observed data can be fitted exactly
by a linear model of the appropriate order. For example, a linear quadratic
model involving three factors is

3 3 3. 3

2
Y=8,+2 P.X. +Z B, X+ T T B,.XX
0 jop Lo, TiE j=] jui+l > 5 i |

This model,which has 10 parameters, can be used to exactly fit data from less
than 11 observations. However, such a model may have very poor validity at
points other than those at which the observations have been made. Further
the interpretation of higher order interactions is usually rather difficult.
In practice, therefore, it is preferable to start with a linear first-order

model and to progressively introduce higher order interactions only if they

49

greatly increase the precision of the model. A good example of this approach

is found in [TSA72]. A linear first-order model of the above system is
T=fy+ ﬁlxl + 82x2 - B3x3

3.5.1.2 Calibration of regression models

Calibration of say, a linear first-order model consists of estimation

of the Bi's, from data observed about the system. The estimation procedure

is that of least square error. Suppose we have n observations of a system

response Y to which a linear first-order model involving one factor X1 is to
be fitted. Let the observations be (Xi, Yl),... (XT, Yn). The response value

predicted by the model at the factor value Xi is

AL _ i

Y Bk B.X]
Thus the sum of the squares of the deviations of the model predicted responses
from the system responses is

& el
S =% (Y -Bo-slx

2
3
i=1

For least square error, BO and Bl are assigned values which minimize S. This

is done by solving the equations

3s G vl i
=-2% (Y -B.-B.XD)=0
aB'o' o g "1t
and °s_ . -2 ; iyl -8 - g.x1y = 0
%8, gui 1 R

which yields the least square estimates of 50 and Bl'

vt 0 3

‘.u..

.

50

The above procedure is easily generalized to models of higher
order as well as to non-linear models.

3.5.1.3 Regression algorithms

The most widely used regression model building algorithm is the
stepwise regression procedure described in [DRA66]. In this procedure,
factors are introduced into the regression equation in the decreasing order
of their partial correlation with the response. However, a factor is
introduced only if its correlation with the response is above a significance
level that is specified by the model builder. Moreover, when a factor is
introduced, the contributions of factors that had been introduced before are
re~-assessed, and some of these may now be rejected from the model. Thus the
final model will contain only those factors whose correlation with the
response is above the significance level specified by the model builder, and
which are not strongly correlated with each other.

The detailed procedure involves analysis of variance and other
statistical techniques, which are beyond the scope of this report. [DRA66]
is an excellent reference for these methods.

3.5.2 The Analytical Model of the System

The analytical model of the system 360/91, that was chosen as
the high level of the 2-level hierarchy, expresses the system instruction
throughput, as defined in Sec. 3.4.11, as a function of the six system
parameters described in Sec. 3.4.10. The model chosen was a linear, first-
order model. However, to achieve a better fit with the low-level model
predictions, as well as to reflect the actual range of values usually
chosen for some system parameters, these parameters were represented in

various functional forms in the analytical expression. Thus, since most

systems are designed with the number of memory banks and instruction buffer

51

slots chosen as powers of 2, these parameters were represented in the
logarithmic form in the analytical model.

The analytical model is thus expressed by the relation:

sit = B, +8;- mc+62-1°g2mb +8,-log,ib +B, +Ex +B - £4 (1)
where:

Sit = average system instruction throughput

ﬁi = model parameters that are estimated by the regression procedure.
mc = memory cycle time

mb = number of memory banks

ib = instruction buffer size

fx = the fixed point unit architecture parameter

f4 = the floating point unit architecture parameter.

The 4m parameter is handled by building separate equations as in (1) for
4m = 0 and 4m = 1,

As is characteristic of models at the high end of the hierarchy
the accuracy of this model is expected to be good only in restricted regions
of the system parameter space. However, its evaluation is trivial - once
the Bi's are known, i.e., once the model is calibrated, the performance
prediction for a set of system parameter values is obtained by plugging
these values into equation (1).

3.5.2.1 Model calibration

Given a set of n observations of throughput, sitj, at the system

parameter setting (mcj, mbj, ibj, ij, fzj) (j=1,...n), the calibration

procedure estimates the 5i's (i=0,...5) of the regression equation(l).

The procedure uses the stepwise regression algorithm mentioned in the

ettt s itk e it

52

previous section, with some simplifications tailored to the specific use
of the model.

Since the model is to be used in system design or optimization,
it must indicate values for all the system parameters in the final system.
This implies that all the system parameters must appear in the expression
for performance. Thus, the usual statistical significance test that is
applied to decide which factors should appear in the regression equation
is bypassed; instead all the factors are forced into the equation.

Further, as the outline of the optimization procedure in Chapter 2
suggests, the model needs to be accurate only in the system parameters
sub-region of immediate interest. This is because of the continual process
of re-calibration as the procedure explores the system parameter space. Thus
at the initial stages,even if the model is not statistically significant
(see [DRA66]), at some reasonable level of confidence, it will be accepted,
since it is reasonable to expect that as more recalibration is done, the
accuracy of the model, in local regions, will improve. Consequently, the
statistical tests for significance of regression and for lack of fit using

replicated observations [DRA66] are not performed. Thus the regression

procedure is used solely for the least squares estimation of the Bi's.

s h

53 ’
CHAPTER 4

SYSTEM OPTIMIZATION USING THE PERFORMANCE MODEL HIERARCHY

4.1 Introduction

In the last chapter, we introduced the CPU-memory subsystem of
the IBM System 360/91, as the system chosen for the case-study of the
hierarchical approach to performance evaluation. We presented a functional
description of the system, and two models - a control stream model and an
analytic performance model - of the system. In this chapter, we discuss
the construction of a hierarchy composed of these two models. We 'so

describe a procedure that uses the hierarchy to design an optimum system.

4,2 System Optimization Objectives

The techniques described in this chapter can be used to optimize
a system configuration with respect to any objective function that involves
system performance. In our study, we chose cost/performance ratio as the
objective function to be minimized. Other objectives that may be considered
by a system designer include maximizing system performance subject to an
upper bound on system cost, and minimizing system cost subject to a lower
bound on system performance.

We will use the performance model hierarchy to estimate the
performance component of the objective function alone. We will assume that
the other components of the function can be estimated with the desired

accuracy.

4.3 Application of the Hierarchical Approach

In Chapter 2, we introduced the concept of a performance model
hierarchy as an efficient tool for exploring a computer system parameter

space. Its efficiency arises from the two main features of the hierarchy:

54

1) The accuracy of performance predictions increases as we go

down the hierarchy.
2) The computational cost of prediction increases as we go
down the hierarchy.

The latter feature demands that a high-level model be used for
performance prediction in any optimization loop, so as to keep down the
computational cost of the optimization procedure. The former feature ensures
the accuracy of the procedure, by providing a low-level model as the basis
for re-calibration of the high-level model after every iteratiom of the
optimization. The optimization is then repeated till the predictions of the
two models converge.

4.,3.1 Roles of the Models in the Hierarchy

From the discussion above, it is clear that the two models play
distinct roles in the hierarchy. The control stream model serves to mark
with great accuracy points on the performance surface in the six-dimensional
system parameter space. The analytical model attempts to use as many of
these points as necessary to obtain an approximation to the surface in a
local region of the space. In fact choosing a linear, orthogonal (first-
order in all its factors) analytical model, chooses a hyperplanar approxi-
mation to the performance surface in that region. It would be expected
that this approximation is quite gross over large regions of the space.
However, the optimization procedure relies on three factors to make this
approximation palatable:

a) Constant re-calibration, i.e., using the control stream model
to fill in a new point on the surface with every iteration of the optimization

procedure. This causes the hyperplanar approximation of the analytical model

e ——l]

to change, as new points appear on the surface in the region currently
being explored, or as the optimization procedure shifts to new regions
in the space.

b) As the optimization procedure zeroes in on the optimum,
the region of interest shrinks in size, making the hyperplanar approxi-
mation increasingly better, in that region.

c) 1In the optimization procedure, the hyperplane model, i.e., ;
the analytical model,will be used primarily to indicate the preferred

direction of movement on the surface toward the optimum. It will have a E

smaller part in deciding the magnitude of the movement in that direction.
These points will be elaborated upon in later sections. 1In
the discussions to follow, the analytical model will also be referred to

as the hyperplane model or as the hypernlanar approximation.

4.4 The Optimization Procedure

We now describe a systematic procedure for exploring a given
system parameter space, to optimize an objective function that involves
system performance. The description will be in terms of a general system
parameter space, with the case-study being used to illustrate the concepts
developed.

4.,4,1 Definitions and Overview

The procedure that determines the optimum system is called

the global optimization procedure. The points in the space for which the

performance has been evaluated using the low-level model are called

calibration points. The set of calibration points is called the calibration

set. One point in this set is singled out as the reference system.

This system is the focal point in the region that is currently being explored

by the global procedure.

56

Each iteration of the global optimization procedure consists of

the following steps:

a) A local optimization procedure is applied to the objective

function using the current version of the analytical model. This will
usually be a standard multi-dimensional, real-variable optimization

procedure.

b) A movement rule is invoked to determine the new reference

system from the old reference system and the prediction of the local

optimization procedure.

c¢) A stopping rule is invoked to see if the global procedure has

converged.

d) 1If it has not converged, a recalibration procedure is applied

to the calibration set to recalibrate the analytical model at the new
reference system using a subset of the calibration set called the recali-
bration set. This may involve evaluating the performance of the new
reference system using the low-level model.

Once the global procedure has converged, a sensitivity analysis

procedure is invoked to probe the region near the optimum. This is both for
the purpose of identifying the true optimum in the local region to which the
global procedure has converged, as well as to determine the sensitivity of
the objective function to the various system parameters near the optimum.
For the first iteration of the global procedure, an initial cali-

bration set and an initial reference system must be supplied. Figure 4.1 is

a flowchart depicting the various steps of the procedure. We elaborate on

each of these in the sections to follow.

o

52

: Choose initial
calibration set
and initial
reference system

Y
& Run recalibration
procedure on
calibration set to
recalibrate analytical
model at reference
system

Y
Run local optimization
procedure

\

Apply movement rule
to determine new
reference system

A

Apply stopping rule

Procedure Yes

converged?

4

1 New Sensitivity
; reference Analysis

2 system
{ calibrated?
i

b &
Run low level model

at reference system.
Add to calibration
set

|
! FP-5746

Figure 4.1 The global optimization procedure.

Ghdhanis dn.diog e (Lodeile 2l L et

58

4.,4,2 System Parameter Metrics and a Multi-dimensional Grid in the Space

Since the hyperplane model approximation to the performance
surface is expected to improve for smaller regions of calibration, the
concept of distance in the system parameter space becomes important. Thus,
recalibration with respect to the reference system should only involve
points from the calibration set that are close to that system. To quantify
distance in the space, a metric has to be defined for each system parameter
dimension. The metric must be chosen in such a manner that distances along
individual dimensions can be combined to yield a reasonable estimate of
overall distance in the space.

Often, it is most convenient to choose the metric along each
system parameter dimension to reflect the maximum resolution possible in the
set of values that the parameter can realistically assume. Thus, in our
case-study, the metrics were chosen as shown in Table 4.1. Distance in the
space is then defined as the standard n-dimensional Euclidean distance. For
example, in our case-study, the distance between two systems with parameters

(mc, mb, ib, fx, ££, 4m) = (<, 64,8, 3,2, 1) and (7, 16, 32, 1, 2, 0) is:

[(7-5)% + (4-6)% + (5-3)% + (1-3)% + (2-2)% + (0-1)%] = /17 metric units.

By this definition of a metric along each dimension, we have laid
a multi~-dimensional grid on the system parameter space, with points of the
grid spaced one metric unit along each dimension. Each grid point now
represents a realistic system configuration. The goal of the optimization
procedure is to identify the grid point which represents the optimum system.

4,4,3 The Initial Calibration Set

If the global optimization procedure can be shown to converge to

the global optimum system regardless of the starting point, the initial

Table 4.1 - Metrics for the System Parameter Dimensions

System Value in Value in
Parameter natural units metric units
me me CPU cycles me
mb mb banks log mb
ib ib buffers log ib
fix fx architectural fx
units
(see section 3.4.10)
fl f1 architectural fl
units
Im Im architectural Im

units

59

60

reference system could be arbitrarily chosen. Since this may not be the

case, the choice of the initial reference system may have to be based on

intuition or experience, or be fixed by other cost or performance constraints.

In our case-study we arbitrarily chose the point that matches the existing
360/91 as the initial reference system. This system shall henceforth be

referred to as the normal system.

An initial calibration set must then be chosen around the reference
system. Since this is the calibration set for the first iteration of the
global optimization procedure, it must be chosen so as to yield enough
information for a reasonable fit of the hyperplane model in the region around
the initial reference system. This implies that there should be points on
either side of the reference system along each dimension. In our case-study,
we chose a very sparse set consisting of systems each of which had a change
in only one dimension from the reference system. Table 4.2 lists the initial
calibration set chosen for the case-study. This is repeated for 4m = 0 and
4m = 1 as will be discussed in Sec. 4.5.1. The parameter values are given in
the natural units listed in Table 4.1. This will be the practice through
the rest of this report.

The control stream model is then used to predict system perfor-
mance at all the points of the initial calibration set. These points on the
performance surface are then used to calibrate the analytical performance
model to be used in the first iteration of the global optimization procedure.
The calibration is done as described in Sec. 3.4.2.1.

4,4,4 The Movement Rule

Since the local optimization procedure is supplied with a very

approximate evaluation of the objective function, viz, one involving the

hyperplane model, its predictions must be used carefully to prevent the global

et cis

B

61

Table 4.2 -Initial Calibration Set and Reference System

System System Parameters
me mb ib fx fl
Reference
System
1 12 16 8 1 3
f 2 6 16 8 1 3
| 3 18 16 8 1 3 1
4 12 8 8 1 3 ’
, 5 12 32 8 1 3
! 6 12 16 8 2 3
7 12 16 8 2 3
8 12 16 8 1 1
9 12 16 8 1
10 12 16 4

—_
w w N

-
-
(o)}

——

62 |

procedure from making wild excursions. For a simple example to illustrate
this, consider the unidimensional performance function P(S) in Figure 4.2. #
The analytical model for this dimensionality is a straight line. When the

model is M, about the reference system Sl,~its range of validity Rl’ is

1
much larger than the range R2, of the model M2 about the reference system SZ'
Thus movement must be much more restricted when the optimization uses the
model M2 than when it used Ml' Even when using the model Ml’ movement
must be somewhat restricted to prevent it from going outside the range Rl'

In the optimization of the case-study system the following move-
ment rule was adopted. When the local optimization procedure arrives at an
optimum based on the current analytical model, the reference point is shifted
one grid point (in metric units) along each dimension in the direction that
the predicted optimum is located with respect to this reference point. This
is done regardless of the magnitude of the distance between the reference
point and the predicted optimum.

The restriction of the movement to one grid unit prevents excursions
beyond the range of validity of the analytical model. However the enforced
movement, regardless of the magnitude predictions of the local optimization

procedure, forces the procedure to make a rough exploration of as much of the

objective function surface as possible in the initial stages, before zeroing

in on a particular region as the most promising one for finer exploration.
Examples of the application of the movement rule are given in Table 4.3. It
should be noted that the movement along the mc dimension is three metric units
in the first example and one metric unit in the second. This is a consequence

of the adaptively varying metric unit adopted for the mc dimension, to be

discussed in Sec. 4.5.2.

63

e

FP-3738

e ey T R S YIS B8 A

(S) 9oUDWIO} I

Figure 4.2 Validity of the analytical model in different regioms.

il g
P

Table 4.3 - Application of the Movement Rule

Starting
reference system

Optimum system
predicted by
hyperplane
model

New reference
system

Starting
reference system

Optimum system
predicted by
hyperplane
model

New reference
system

64
System Parameters
me mb ib X 1
12 16 8 1 3
9.6 63.9 31.9 2.9 0.7
9 32 16 2 2
Example 1.
6 32 16 2 1
4.2 38.4 12 35 1.6
5 64 8 3 2

Example 2.

e o

AR SRR E, o Dl

Lo\

65

4.4.5 The Stopping Rule

When successive iterations of the global procedure cause an
oscillation of the reference point between two calibration systems, the
procedure is deemed to have converged and is stopped. To understand this,
let us consider the cost/performance function of one system parameter in

Figure 4.3. Suppose the n-th iteration of the procedure using model Ml’
at the reference system s1 causes a movement of the reference point to SZ'

Let the recalibrated model at S, be M, which, on the (n+ l)st iteration

2 2

dictates a movement of the reference point back to S It S2 already

1
existed in the calibration set at the n-th iteration, the situation now

is exactly the same as at the n-th iteration. Thus the (n+2)Rd iteration

must cause the reference point to move back to S The procedure would thus

2
oscillate forever between S1 and SZ' It is therefore stopped.

4.4.6 Heuristic Algorithms for Recalibration of the Analytical Model

For each iteration of the global optimization procedure, the
reference point is moved to a new system by the application of the movement
rule described in Sec. 4.4.4. If the new reference system is not a cali-
bration point, the low level model is used to accurately evaluate the per-
formance at this system, which is then added to the calibration set. The
analytical model is then recalibrated at this reference system choosing an
appropriate recalibration set. This possibly new hyperplanar approximation
is used in the next iteration of the global optimization procedure. In
this section, we discuss algorithms for performing this recalibration.

4.4.,6.1 Calibration requirements

For the hyperplane model to be a good approximation, information

local to the region around the reference system must be used in the

Cost (S)
Performance (S)

66

Actual
Cost/Performance

Curve /
n/ //
\ \\ < /’
\ /
\ /
\ r
\ /
\, [! ¥+
| ' ’
A, { i s \
/\.\ . I; " -i_ M2
My B |
| A
| !
1 L - S
Sz 31
FP=5739

Figure 4.3 Oscillation between two reference systems,

G i

T

Y

67

recalibration. Thus the set of points chosen for recalibration must
satisfy the following two criteria.

1) Along those dimensions for which the reference system does not
have an extreme value, i.e., calibration points exist on either side of the
reference system along that dimension, the point closest to the reference
system each direction along that dimension must be in the set.

2) Along dimensions for which the reference system does have an
extreme value, i.e., no calibration point has a value beyond that of the
reference system in one direction along that dimension, the point closest
to it in the other direction along that dimension must be in the set.

For example, the minimum recalibration set for the grid points
of Table 4.2, with system O as reference, will not include systems 7 and 8,
since system 0 has extreme values along the fx and f{ dimensions and
systems 7 and 8 are not the closest ones to 0 along those dimensions.

These two criteria are used by the two recalibration algorithms
to be discussed now.

4.4.6.2 Multi-dimension Recalibration Algorithm

In this algorithm, all the calibration points are ordered in
increasing order of their distance from the reference system. Systems for
the recalibration set are chosen in this order, until the above two criteria
are satisfied for all the dimensions. At this stage, any other points that
are at the same distance from the reference system as the point in the
recalibration set at the maximum distance from the reference system are also
included in the set., This recalibration set is then used by the multi-
dimensional regression procedure, described in Sec. 3.4.2.1, to estimate

the Bi's of the analytical model. 1If the cardinality of the set is

insufficient for the regression procedure to estimate all the model parameters,

|

68

further points are added to the set in the increasing order of their distance
from the reference system, until the cardinality is sufficient.

Table 4.4 shows the results of an application of this recalibration
algorithm to the case-study system. Notice that the grid unit distance in
the mc dimension is six cycles in this example. The reason for this is
explained in Sec. 4.5.2. The lower half of Table 4.4 shows percentage
errors between the observed throughput values from the control stream model
and the fitted throughput values from the analytical model. Thus, for the
systems in the recalibration set in this example, this algorithm achieves
an upper bound of 2% on the absolute regressiom error.

It should be observed that the algorithm as described chooses the
smallest local region containing the calibration points needed to satisfy
the criteria of Sec. 4.4.6.1, This is the implementation of the philosophy
of using the analytical model to make only local predictions. Including
more systems than the above minimum, would decrease the locality of the
model and increase the regression error bound of the algorithm.

4,4.6.3 Individual Dimension Recalibration Algorithm

In this algorithm, system clusters are identified separately for
each dimension. These clusters are then used to calculate the slope,i.e.,

the Bi’ along that dimension, independently of the other dimensioms.

The clusters are formed in the following manner. For each dimension,

the point or points closest to the reference system along that dimension,
according to the two criteria of Sec. 4.4.6.1 are first included in the
cluster. If there is more than one candidate for these nearest neighbor

points, the one that is the closest to the reference system in the

n-dimension Euclidean sense defined in Sec. 4.4.2 is selected. Next, all

e (i ot SR

"

TR R

=y

Table 4.4 - Multi-dimension Recalibration Algorithm

Calibration set: 00 02 03 04 05 06 07 08 09 10 11 27
Loopmode: 1 (on)

Reference system: 27

mec grid metric: 6 CPU cycles

Distance of systems from reference system:
System me mb ib fx fil

27 0.00 0.00 0.00 0.00 0.00 0
5 0.33 0.00 -1.00 -1.00 1.00 0
6 0.33 -1.00 -1.00 0.00 1.00 0
9 0.33 ~1.00 ~1.00 -1.00 0.00 0

11 0.33 ~-1.00 0.00 -1.00 1.00 0
0 0.33 ~1.00 -1.00 -1.00 1.00 0
7 0.33 ~1.00 -1.00 1,00 1.00 0
8 0.33 -1.00 -1.00 -1.00 -1.00 0
2 -0.67 ~-1.00 -1.00 -1.00 1.00 0
3 .35 ~1.00 -1.00 -1.00 1.00 0
4 0.33 ~-2.00 -1.00 -1.00 1.00 0

10 0.33 -1.00 -2.00 -1.00 1.00 0

Re-calibration set: 27 5 6 9 11 @ T 8 2
Hyperplane model coefficients:
Constant me mb ib £y
0.28991 -=0.01287 0.01939 0.00425 0.01094

Error in hyperplane model predictions of throughput:

System Observed Predicted %Error
27 0.30965 0.31226 -0.84
5 0.28156 0.27895 0.93
6 0.26681 0.27050 -1.38
9 0.24924 0.25195 -1.09
11 0.26642 0.26381 0.98
0 0.25669 0.25956 -1.12
7 0.28458 0.28144 el
8 0.24699 0.24434 1.08
2 0.33764 0.33677 0.26
3 0.20186 0.18235 9.66
y 0.22391 0.24018 -7.27
10 0.19933 0925551 -28.09

69

1m Norm~™2

o
o
NNUIEESEFLWWWWO

£l
0.00761

wile]
17
=il
Se ks
1
=11
«11
.78
S
< 11

aiinaiix

TR T

70

points within the hypercube defined by the reference system and the nearest
neighbor points are included in the cluster. Thus the cluster may contain
points that differ from the reference system in dimensions other than the
one under consideration. Let there be m such dimensions. The points in
the cluster are used by the multi-dimensional regression procedure of
Sec. 3.4.2.1 to fit a (m+ 1) factor regression equation with the dimension
of interest being forced to appear in the regression equation. That coeffi-
cient alone is taken from the resultant regression equation, and used as
an estimate for the B along that dimension.

This procedure is repeated for each of the dimensions. Once the
B.'s have been estimated for each dimension, B

i 0

the analytical model to exactly match the performance of the reference

is calculated by forcing

system.

Table 4.5 shows the results of the application of this algorithm
to the same set of calibration points as in Table 4.4. For example, along
the mc dimension, systems 5, 6, 9, and 11 are the nearest neighbors of the
reference system 27 on the right, while system 2 is the nearest neighbor
on the left., These define a hypercube with dimension ranges (-0.67 to 0.33,
-1 to 0, -1 to 8, -1 to 0, 0 to 1) in metric units. Since system 0 is
inside this hypercube, it is included in the cluster for recalibration of
the mc dimension.

It can be seen that the precision of this recalibration algorithm
is far worse than that of the multi-dimension algorithm. In this example,
the individual dimension algorithm achieved an upper bound of 10% on the
absolute error for systems that occur in some cluster, as compared to 2%

by the multi-dimension algorithm. In fact in all the examples that were

71

Table 4.5 - Individual Dimension Recalibration Algorithm

Calibration set: 00 02 03 04 05 06 07 08 09 10 11 27
Loopmode: 1 (on)

Reference system: 27

mc grid metric: 6 CPU cycles

Distance of systems from reference system:
System me mb ib fx)il 1m Norm~2

27 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.33 0.00 -1.00 -1.00 1.00 0.00 .1
6 0.33 -1.00 -1.00 0.00 1.00 0.00 3.1
9 @.33 -1.00 -1.00 -1.00 0.00 0.00 3.1
11 0.33 -1.00 0.00 -1.00 1.00 0.00 3.0
0 0.33 -1.00 -1.00 -1.00 1.00 0.00 4,11
7 0.33 -1.00 -1.00 100 100 0.00 4.11
8 0.33 -1.00 -1.00 -1.00 -1.00 0.00 U
2 -0.67 -1.00 -1.00 -1.00 1.00 0.00 4,44
3 133 -1.00 -1.00 -1.00 1.00 0.00 5.78
Yy 0.33 -2.00 ~1.00 -1.00 1.00 0.00 e bl
10 033 -1.00 -2.00 -1.00 1.00 0.00 ik
Individual dimension clusters:
E: Parm Systems
e me 0 2 5 6 g 11 - 27
: mb 0 5 6 QRS2
ib 0 5 6 GRS TS 2T
fx 0 5 6 14 G R 2T
fl 0 5 6 8 GRS T

Hyperplane model coefficients:
Constant me mb ib fx fi
0.20595 -0.01307 0.02859 0.01345 0.01395 0.00485

Error in hyperplane model predictions of throughput:

System Observed Predicted %Error
0 0.25669 0.23232 9.49
2 0.33764 0.31074 7.97 |
3 0.20186 0.15390 23.76 |
4 0.22391 0.20373 9.01 :
5 0.28156 0.26091 Te33
6 0.26681 0.2u4627 it s
i 0.28458 0.26022 8.56 :
8 0.24699 0.22262 9.87 1
9 0.24924 0.22747 8.73
10 0.19933 0.21887 -9.80
1 0.26642 0.24577 TT5
21 0.30965 0.30960 0.00

72

tried, this method had a larger error bound. The reason would appear to be
that the individual-dimension algorithm neglects some factor interactions
because of the piecemeal approach, whereas the multi-dimension approach
tries to fit an overall model that approximates the interactions as best
as it can. Consequently, the multi-dimension algorithm was the one chosen
for the recaliusration procedure of the analytical model.

4.4.7 Bounding the Error of the Analytical Model

To control the global optimization procedure even further, an
upper bound can be computed for the prediction error of the amalytical
model at each iteration. If the error exceeds the bound, the predictions
of the procedure can be further checked or the procedure itself modified.
We now develop an expression for a conservative bound, that can be used
for this error checking.

;Q Let us represent points in the system space by the vectors
S = (sl""SS)’ Let the actual performance and cost surfaces be P(S) and
C(S),respectively, both of which are positive. Let the objective function,
which is to be minimized be £(S) = C(S)/P(S). Let the reference system,

at which the local optimization procedure begins, be Sr = (s 8

rS)'

Then the direction of movement of the procedure should be given by the

rl’’

gradient of £ at Sr' Thus, along the i~-th dimension,

- £ (S)
VEL(sr) s

o, s
-~

.2 L8
3s, P(S))ISr

IS ds, S
' i

2
[(P(s,)]

T

L N— - ‘ | ET— RS — ———

73

c(s,) - VR, (5.) - B(S)) - Vci(sr)

2
[B(s,)]

where VP.(S.) = %2£§l‘ 3
P s, 3
l Sr ;
and vC.(S.) = §9£§1| : ;

Ty asi S

r

R o AT

Assuming that the cost function is orthogonal, but not necessarily first

order, in its parameters, let

VCi(Sr) = ki(sri> g

In optimization using the analytical model, the cost function is
assumed to be exact. However VPi(Sr) is approximated by Bi’ the i-th
coefficient of the regression expression. Assuming that P(Sr) is predicted

exactly by the analytical model, the approximation to vfi(sr) is

C(s) « By - B(S) « ky(s)

((s,)1

Vfi(st) =

Thus, the bound on the error of Bi is such that vfi(sr) and efi(sr) have the
same sign, so as to cause the local optimization procedure to move in the
correct direction along the i-th dimension. Applying theorem A.l (see

Appendix A), this is satisfied if

le@s,) « T,(s)) - c(s) - B

< lees,) - VB (5) - P(S) - k(s],

educes O

P(Sr)
C(Sr)

-8, <|vp (s - c Kk | . (4.1)

1 (559)

T

L

However, to use this bound on the error in 51, the value of

vPi(Sr) is required. This can be approximated by considering the broken
hyperplane approximation to the surface. For example, consider the one-
dimensional analytical model in Figure 4.3. Let my and m, be the slopes

of the two segments of the broken straight line approximation to the curve,

that pass through Sr' Then vPi(Sr) may be roughly bounded by:
m > VP, (S) 2 m,.

If, for VPi(Sr) in inequality 4.1, we substitute an estimate based on m,
and m, the bound can be used in practice. The estimate can be chosen so
as to develop either a worst-case bounding condition or an average bounding

condition. Thus the worst case inequality that bounds Bi is:

max(lml =1 Bil’ |m2 = Bll)

P(Sr) . ki(sri)l
c(s,) L%

< min(\m1 -

P(Sl':) 2 ki(sri)

- A c(s,) b -

|m

A more optimistic bounding inequality would be:

g

|mean@,, m,) - 8, |
P(Sr) . ki(s)

ri (
C(Sr)

< |mean(m1, mz) -

If we now allow for an error in the model prediction of performance mP(Sr)

the bounding condition is:

75

Performance (S)

b e e s e o e e e e e i i s e 2 s e o

>

FP=-5737

w
—
wn
..
w
n

Figure 4.4 Bounding the slope of the performance curve.

76

[mean(ml, m2) - Bil

Sl
< Imean(ml, m2) - Ezg;y—~ . mean(P(Sr), mP(Sr))‘

For every recalibration of the analytical model, the error bound
conditions can be calculated as above, for each dimension. The confidence
in prediction is high for those parameters that satisfy the inequality.

For those that do not, one of the following corrective steps may be taken:
1) The direction opposite to that of the prediction can be examined.
2) The recalibration set can be changed to eliminate some possibly
misleading calibration points.

4,4,8 Sensitivity Analysis

When the global procedure has converged, sensitivity analysis
,_; must be conducted in the region around the predicted optimum for the

following reasons: ;

a) To precisely identify the optimum in the region of oscillation.

b) To determine the semsitivity of performance,and hence the
objective function,to small changes from the optimum system. This may
indicate changes that can be made in the system design, for a very small :
sacrifice in performance or cost. Such changes may be attractive to meet
other design objectives. Since accurate predictions of performance are
needed to meet the above objectives, the low-level model must be used for
performance evaluation at this stage.

4.4.8.1 Exhaustive Sensitivity Analysis

This procedure evaluates the performance,and hence the objective

function,at all the grid point neighbors of the predicted optimum. This is

repeated until a system which is better than all its neighbors is found.

77

This system is a local optimum. For example, if the global procedure settles i

on (5, 64, 8, 2, 2) as the optimum system, this procedure would evaluate

systems with all combinations of the following parameter values:
mc : 4, 5, 6 i
mb: 32, 64, 128 |
ib: 4, 8, 16
fx: Ly 25 3
fi: 1, 2, 3 »
This would require the evaluation of 35 = 243 systems, for the first analysis 13

of sensitivity.

4.4.8.2 Single Parameter Sensitivity Analysis |

To avoid the large number of expensive calls on the low-level
model required by the exhaustive procedure, a single parameter approach to
sensitivity was adopted. In this procedure, the neighboring systems along

a single dimension are compared with the predicted optimum. If one of

"

these is better, it is made the new optimum and its new neighbor along the

same dimension is examined. This procedure is repeated until no improve-

ment can be made along that dimension. Each of the other dimensions is
then examined individually, holding all the other parameters constant. If
after one pass through all the dimensions, no change was made to the
optimum, the procedure is stopped. If there were any changes, another pass
is made through all the dimensions.

Examples of this procedure are given in the next chapter.

4.4,9 Efficiency of the Optimization Procedure

Since most of the cost of using the model hierarchy, is in the use

of a low-level model for performance prediction, the procedure can be compared

78

with other procedures by comparing the number of calls on the low-level
model. Two benchmark procedures that bound the efficiency are now defined.

a) The Ideal Procedure: 1In this procedure, the optimum system

is already known. The cost of the procedure is then associated with the
sensitivity analysis around the optimum, which must still be conducted

for the second reason in Sec. 4.4.8. Thus we will assume that the minimum
cost that the system designer must bear is the cost of the sensitivity
analysis in the ideal procedure. The efficiency of the ideal procedure is
defined as 1. All procedures will be compared with the ideal procedure

to estimate their efficiency.

b) The Grid Evaluation Procedure: In this procedure, the low-

level model is used to evaluate the performance of all the grid points in
the given region. The best system in that region is then chosen. For our
case-study, we will assume that the region of interest is bounded by the
minimum and maximum along each dimension, that was ever used as a cali-
bration point by the optimization procedure. For example, if the maximum
excursions along each dimension were:

mc: & to 12 (9 grid points)

mb: 16 to 128 (4 grid points)

ib: & to 32 (4 grid points)

fx: 1 to 3 (3 grid points)

f4: 1 to 3 (3 grid points),

the grid evaluation procedure would make 1296 calls on the low-level model

to evaluate all the grid points in this region.

L

79

With these definitions, the efficiency of the optimization
procedure is defined as
T = Number of calls to the low-level model by the ideal procedure

Number of calls to the low-level model made by the optimization
procedure.

A lower bound on achievable efficiency is defined as

| S Number of low-level model calls by the ideal procedure .
L Number of low-level model calls by the grid evaluation procedure

Both these estimates are used in the next chapter.

4.5 Adaptation of the General Procedure to the Case-Study

In the previous section, we described a general procedure for
finding the optimum point in a given system parameter space. In this section,
we discuss some of the choices and assumptions made in applying this procedure
to our case-study.

4.5.1 Continuous vs. Non-continuous System Parameters

The choice of a grid on the space was dictated by the desirability
of examining only realistic computer systems. The grid points represent only
such systems. However, for some parameters, points other than grid points also
represent possible systems. Thus mb or ib can conceivably have a value that
is not a power of two. A non-integral value for mc could be achieved by a
finer division of the cycle time. A value of 2.5 for the fixed point unit
architecture may represent a design that is a compromise between the pipe-
lined architecture and dataflow architecture described in Sec. 3.4.6.3.

Thus these system parameters can be approximated by real values. However, in
the local optimization procedure,the {4m parameter is strictly a Boolean

parameter., That is,a system either does or does not have loop-mode. Thus non-

boolean values for IZm would be unrealistic.

o

L —

80

In view of the above, the global optimization was split into
two parts - finding an optimum system on the 4m = O hyperplane and another
on the 4m = 1 hyperplane. On each of these hyperplanes, a standard multi-
dimensional, real variable optimization procedure was used as the local
optimization procedure to determine the other five parameters of interest.
The better of the optima on the two hyperplanes is then identified as
the optimum system.

In an early version of the optimization procedure, the initial
calibration set for optimization on the /m = O hyperplane consisted of only
one system - the normal system with loop-mode turned off. Projections of
the initial calibration set on the 4m = 1 hyperplane (see Table 4.2) onto
the 4m = 0 hyperplane were used by the procedure in its initial cali-
bration. This approach is a logical extension of the orthogonality
assumption to the 4m dimension. However, the errors in this assumption
were so large as to cause the procedure to move very erratically on the
4m = 0 hyperplane. Consequently, this approach was abandoned and an entire
initial calibration set as in Table 4.2, was used on the 4m = 0 hyperplane
as well.

4,5,2 Adaptive Metric for the mc Dimension

Since the range of the mc parameter is considerably larger than
the ranges of the other parameters, a variable metric was chosen for that
dimension. If the metric were chosen as one CPU cycle, it was expected
that the global optimization procedure would cause very small incremental
moves in the mc dimension. To avoid this, the metric was chosen as six
cycles initially. This explains the settings of 6 and 18 for mc in the
initial calibration set of Table 4.2. However, if this large metric value

were retained at later stages in the optimization,systems with large

o

i

e

TR

8l

differences in mc from the reference system would still be included in
the recalibration set, because the large mc metric makes them appear closer
(in metric units) to the reference system. Thus the locality of the
analytical model calibration is lost., This effect was actually observed

in an early version of the optimization procedure.

To compromise between these two opposing needs, the following mc
movement and metric reduction rules were adopted:

1) If the movement dictated by the optimization along the mc
dimension 1is larger than the current mc metric, the reference point is
moved just 1 metric unit along the mc dimension in that direction. If
the movement dictated is less than one metric, the reference point is
moved to the first integral value of mc, beyond the predicted optimum from
the reference point.

2) The initial value of the mc metric is six cycles. This value
may be decreased once every three iterations of the optimization procedure
and is held constant in between. The new value for the metric is chosen
as follows:

If the maximum movement in the last three iterations was equal to
the old metric value (it cannot be greater), the metric value is decreased
by 1. 1If the maximum movement in the last three iterations was less than
the old metric value, the metric value is reduced to the value of that
maximum. The metric is, however, never reduced below 1.

3) I1f oscillation occurs between two calibration points that are more
than one cycle apart in the mc dimension, the oscillation is broken by

reducing the metric by 1.

82

Sl

By the above procedure, the mc metric will eventually be reduced
to 1, the resolution required of the optimization procedure. The metric
reduction thus progressively expands the mc dimension so as to focus
* ! attention on the region of interest, by excluding points far away from
having any effect on the calibration. The rate of this expansion is tied
to the rate at which the optimization procedure seems to converge - which
is indicated by the magnitude of the moves that it dictates. Some examples

of the application of the movement rule for the mc dimension are given 4

in Table 4.6.

4.5.3 Feasibility Checking

Since only a restricted region of the system space can be

simulated by the control stream model, the local optimization procedure

must be restricted to this feasible region of the space. For example,

fixed point unit architectures of type 1, 2 and 3 are the only configu-

rations allowed in the simulator. However, we found that enforcing very
strict feasibility checks such as 1 < fx < 3, allowed the local optimization

: very little freedom of movement and caused it to stagnate at some feasibility

region boundaries. To counter this we initially designated the feasible %
region to be defined by the inequalties:

0.5

IA

mc *

IA

T

0'5

IA

mb

IA
8

0.5 < ib

IA
IA
8

0.5 £ £x € 3.5

IA
1A

'? 0.5

IA

£2

1A

3¢5

83

Table 4.6 ~ Movement in the mc Dimension

Example 1 2 3 4
;‘ Current mc
| : grid metric 6 3 2 1

mc component
of starting
f reference

system 24 9 6 6

' mc component

1 of optimum
system predicted
using hyperplane
model 10.2 Lol 3.6 6.7

mc component
of new reference
system 18 T Yy 7

84

However, as experience and insight were gained in the use of the
optimization procedure, it was decided that applying only the above checks
for feasibility allowed the local optimization procedure too much freedom
of movement, resulting in it exploring regions far beyond the region of
validity of the analytical model. For example, on one iteration, starting
at a reference system with ib = 8, the procedure reached an optimum system
with ib = 160. Since the linear dependence of performance on ib resulted
in an exaggerated value of performance at ib = 160, changes in the other
parameters did not appear very cost-effective at that high level of perfor-
mance, and were therefore ruled out by the procedure.

To avoid the pitfalls described above and to restrict the movement
of the procedure to the local region of validity of the amalytical model
an additional feasibility region was delineated. Initially this region was
defined to be bounded by grid points one metric unit away from the reference
system along each direction of each dimension. Thus if the reference system
were (5, 32, 8, 2, 2), with the mc grid metric at two cycles, the feasible
region was defined by:

3

IA

me < 7,

16

IA

mb

IA

64,

4

IA

ib

IA

165

1

IA

fx

IA

3

and 1

IA

£

IA

3.
However, this was found to cramp the movement of the procedure severely, and

the feasibility region boundary was extended to include grid points two metric

units from the reference system along each direction of each dimension.

s e it e e

85

For the example above, this defines the feasible region by:

1 <me

IA

9,
8 < mb < 128,
2 <ib £ 32
0.5 < fx < 3.5 and
0.5 < £ < 3.5.
Notice that the bounds imposed by the simulation range of the control stream

model are combined with the bounds restricting movement, to arrive at the

overall feasible region bounds.

86

CHAPTER 5

DESCRIPTION OF EXPERIMENTS AND ANALYSIS OF RESULTS

5.1 Introduction

In Chapter 4, we described a procedure that uses the performance
model hierarchy to optimize the design of a system, with respect to an
objective function that involves system performance. We also outlined some
of the special assumptions made in applying this procedure to the case-
study system described in Chapter 3. 1In this chapter, we describe the

experiments conducted in this case-study, and analyse the results.

5.2 Software Used

In this section, we list the software packages that were used in
the case-study. Except where otherwise noted, all the software was run on the
DEC-10 system at the Coordinated Science Laboratory of the University of
Illinois.

5.2.1 The Control Stream Model

To gather the program traces that generated the control streams,

a modified version of the TRACE-360 program, purchased from the University
of Waterloo, was used. This program, which was run on the IBM 360/75 system
at the Computing Services Office of the University of Illinois, outputs the
dynamic instruction execution trace as well as the memory locations referenced
by the instructions of the program being traced. The conversion of the
traces to control streams was done by a program written in SAIL on the
DEC~10.

The simulator of the model was coded in SIMULA-10. Its length is

about 900 lines of code. Execution times of the simulator on the KI-10 CPU

AD=A057 646

UNCLASSIFIED

ILLINOIS UNIV AT URBANA=-CHAMPAIGN COORDINATED SCIENCE LAB F/6 571 .

COMPUTER SYSTEM DESIGN USING A HIERARCHICAL APPROACH TO PERFORM==ETC(U) !

OCT 77 B KUMAR nuao7-7a-c-0259 |
R=799 I

e

END i
FIMED I
9= 78

fle2

2

3

e fl2ss

g

|

“ 122
I

L fie

|

E—

87

ranged from 12 to 40 minutes for the traces used. A listing of the simu-
lator program is given in Appendix B.

5.2.2 The Analytical Model

The calibration of the analytical model was done by a program
written in SIMULA-10. This calls the procedure RLSEP of the IMSL library
[IMS75], which selects a regression model using the stepwise algorithm des-
cribed in [DRA66]. As described in Sec. 3.5.2.1, all the five system
parameter factors - mc, mb, ib, fx, and f{ - are forced into the regression
equation. Execution times of the calibration program were less than 1 sec.
on the KI-10 CPU.

5.2.3 The Local Optimization Procedure

The local optimization was done by a program written in FORTRAN-10.
This first reads the coetfficients of the analytical model and the parameters
of the system cost model. It then calls the procedure ZXMIN of the IMSL
library [IMS75], which uses a quasi~Newton algorithm to minimize a function
of n variables. As described in Sec. 4.5.1, the five system parameters mc,
mb, ib, fx and f4 are treated as continuous variables by the optimization
program. Execution times of the local optimization program were less than

1 sec.on the KI-10 CPU.

5.3 The System Cost Model

A simple system cost model was chosen, which at the same time,
incorporates reasonably realistic cost functions of system parameters. The
model is orthogonal with respect to the individual parameters and expresses
system cost, normalized with respect to a cost of 100 for the actual 360/91

as C(system) =F (C0 +C +C +C

i F (M0 + Cmc + C

CPU fz) * mem mb)'

Nl a0 s - x B X
it e e e St bl s e et A G 5 N s

88
where:
FCPU : CPU cost as a fraction of system cost = 0.57.
C0 : fixed cost o? the CPU = 15 (for the Main Storage Control
Element section of the CPU)
Ci : cost of the instruction unit = 9 + ib/8 + 5 . £m.
Cfx : cost of the fixed point unit = 24 + fx2
sz : cost of the floating point unit = 36 + fzz.
F om & Memory cost as a fraction of system cost = 0.43.
MO : fixed cost of the memory unit = 2
Cmc : memory cycle time component of memory cost = 371.5/1.nc0°55
Cmb : memory bank component of memory cost = 0.1875 - mb.

The division of cost between the CPU and memory is taken from
[BEL71]. Most of the CPU cost functions are based on a rough division of
cost among the various units of the actual 360/91. The cost division
assumed was:

Instruction unit : 15%

Fixed Point unit s 25%

Floating Point unit : 45%

Main Storage Control : 15%
The cost function for the memory cycle time was derived from a curve fitted
to memory speed, cost and size data for various System 360 Models, obtained

from [BEL71]. The curve obtained was:

(memory size)p'e4

0.55

Memory cost = 32.9 + 370.0 -
(cycle time)

where cost is in K$,

size is in multiples of 256 K bytes and cycle time is in Msec.

i Aais il

89

A further assumption that the cycle time accounts for 95%, and the banking
structure for 3%, of the memory cost in the 360/91, yields the above cost

functions.

5.4 Traces Used in the Experiments

In the optimization experiments that were conducted on the case-

t } study system, three program traces were used for generating the control
streams to drive the low-level model simulator. These traces are sections

of actual program traces obtained as described in Sec. 5.2.1. The traces

k { are
;'; a) EIGEN: a program written in FORTRAN-G, to find the eigenvalues
E z of a 14 x 14 matrix chosen from [GRE69]. It uses the subroutines TREDL

(to reduce the symmetric matrix to a tridiagonal one) and TOLl (to deter-

mine the eigenvalues of the matrix). These two routines were taken from

the Eigensystem Subroutine Package (EISPACK) of the National Activity to

Test Software project. The section of the trace used, was the first four
iterations of the TREDl subroutine. A summary of the instruction mix of

this section is given in Table 5.1. It can be seen that most of the conditional
branches branch back into the instruction stream based on the value of a
counter register, i.e., the program has a large number of instruction loops,

? with sizes ranging from 16 -1024 bytes.

é b) GAUSS: a program written in FORTRAN-G that used Gaussian

elimination to solve a linear system of equations of order 20, taken from

[GRE69]. It uses the subroutine GAUSZ, from the EISPACK library, to solve

the system. The section of the trace used was the first four iterations of

e

the forward elimination loop of GAUSZ. A summary of the instruction mix

i o

60 SR by

T

g

S

Table 5.1 - Instruction Mix Summary of EIGEN

Total number of instructions: 14395

Percentage mix:

Fixed point instructions: 51.39
Address-to-register loads: 2.02
Register-to-register moves: 8.TT
Memory-to-register loads: 9.07
Register-to-memory stores: 5.04
Computational instructions:

On register operands: 17 .57
On memory operands: 8.95

Floating point instructions: 40.41
Register-to-register moves: 0.14
Memory-~to-register loads: 12.26
Register-to-memory stores: 581
Computational instructions:

On register operands: 12.96
On memory operands: 9.24

Branches: 8.20
Unconditional branches: (5 8
Conditional branches:

On the condition code: 1.217

On a counter register: 6.88
Taken: 6.54

Target back in the stream: 6.U46

Mean distance of back-target (in bytes):
Histogram of back-target distance (in. bytes):

Range Percent

i 2 0.00
2 4 0.00
4. 8 0.00
8: 16 0.00
16 32 10.43

32: 64 53.87
6U: 128 26.2U
128: 256 0.00
256: 512 4,52
512:1024 y,s52
>=1024 0.u43

‘

90

iy, 59

it

of this section is given in Table 5.2. This program has about twice the
percentages of branches in EIGEN. However, only approximately half of these
are loop iteration branches.

c) ERROR: a scaled-down version of a FORTRAN program, that is used
as a benchmark by the Computing Services Office of the University of Illinois.
A summary of its instruction mix is given in Table 5.3. This program has a
large amount of double precision floating point computation, done in pre-

dominantly straight-line code, i.e., there are very few branches.

5.5 Discussion of Optimization Experiments

We now discuss some of the optimization experiments conducted using
the procedure described in Chapter 4, on the case-study system for the traces
described in the last section.

5.5.1 An Iteration of the Global Optimization Procedure

Table 5.4 is an example of the results of a typical iteration
of the global optimizatior: procedure. As described in Sec. 4.4.6, the
recalibration procedure chooses a recalibration set from the calibration
set. This is indicated in the top half of the table. The distances indicated
in the table are in terms of the grid metrics for the various dimensions.
The recalibration set is used to calibrate the hyperplane model at the
current reference system. The error in the model for the systems in the
calibration set is printed here for illustrative purposes, but may actually
be used to control the procedure. The coefficients of the model, along
with the cost model parameters described in Sec. 5.3, are fed to the local
optimization procedure, which determines the locally optimum system in the
feasibility region demarcated as in Sec. 4.5.3. The movement rule of

Sec. 4.4.4 is then used to determine the new reference system for the next

| |
92
Table 5.2 - Instruction Mix Summay of GAUSS ;
, Total number of instructions: 19380 |
| q
i Percentage mix: j
i? Fixed point instructions: 38.36
E | Address-to-register loads: 0.75
Register-to-register moves: 5.61
Memory-to-register loads: 5.98
Register-to-memory stores: 2.98
Computational instructions:
On register operands: 16.60 y
On memory operands: 6.43 |
’; Floating point instructions: u6.28
, Register-to-register moves: 0.19 |
| Memory-to-register loads: 13.90
, Register-to-memory stores: 6.76
Computational instructions:
: On register operands: 14.77
3 On memory operands: 10.66
A
5 Branches: 15.35
| Unconditional branches: 0.04
Conditional branches:
On the condition code: 7.60
On a counter register: 7.72
Taken: 14.62
Target back in the stream: 7.67
Mean distance of back-target (in bytes): uu ué

Histogram of back-target distance (in bytes):
Range Percent

1% 2 0.00
2y 4 0.00
4. 8 0.00
8: 16 1.28
16¢ 32 3.84 |
32: 64 28.13
64: 128 61.91
128: 256 1.28
256: 512 3.43
512:1024 0.00
>=1024 0.13

Table 5.3 - Instruction Mix Summay of ERROR

93

Total number of instructions: 13368

Percentage mix:

Fixed point instructions: 4.19
Address-to-register loads: 0.41
Register-to-register moves: 0.27
Memory-to-register loads: 1.81
Register-to-memory stores: 1.18
Computational instructions:
On register operands: 0.02
. On memory operands: 0.49
f Floating point instructions: 93.78
¢ | Register-to-register moves: 0.74
' Memory-to-register loads: 24 .04
* Register-to-memory stores: 15.62
Computational instructions:
On register operands: 1237
On memory operands: 41.02
b Branches: 2.02
' Unconditional branches: 0.89
Conditional branches:
On the condition code: 1.00
On a counter register: 0.13
Taken: 0.10
Target back in the stream: 0. 10

Mean distance of back-target (in bytes): 2423.14
Histogram of back-target distance (in bytes):
Range Percent

12 2 0.00
2 4 0.00
4. 8 0.00
8: 16 0.00
16: 32 0.00

32: 648 0.00
64: 128 0.00
128: 256 14.29
256: 512 0.00
512:1024 0.00
>=1024 85.71

et A iy . e A A
" J aid e >

9

Table 5.4 - An Iteration of the Global Optimization Procedure

Calibration set: 00 02 03 O4 05 06 07 08 09 10 -11 54
Loopmode: 1 (on)

Reference system: 54

mc grid metric: 6 CPU cycles

Distance of systems from reference system:
System me mb ib fx f1 1m Norm~2

54 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 -1.00 -1.00 -1.00 1.00 0.00 4.00
5 1.00 0.00 -1.00 -1.00 1.00 0.00 4,00
6 1.00 -1.00 -1.00 0.00 1.00 0.00 4.00
9 1.00 -1.00 -1.00 -1.00 0.00 0.00 4.00
11 1.00 -1.00 0.00 -1.00 1.00 0.00 4.00
0 1.00 -1.00 ~1.00 -1.00 1.00 0.00 5.00
T 1.00 -1.00 -1.00 1.00 1.00 0.00 5.00
8 1.00 -1.00 -1.00 -1.00 -1.00 0.00 5...00
3 2.00 -1.00 -1.00 -1.00 1.00 0.00 8.00
y 1.00 -2.00 -1.00 -1.00 1.00 0.00 8.00
10 1.00 -1.00 -2.00 -1.00 1.00 0.00 8.00
Recalibration set: 54 2 5 6 911 0 7 8
Hyperplane model coefficients:
Constant me mb ib fx fl
0.29811 =0.01217 0.01694 0.00180 0.00961 0.00894
Error in hyperplane model predictions of throughput:
System Observed Predicted %Error
54 0.35112 0.35409 -0.85
2 0.33764 0.33467 0.88
5 0.28156 0.27858 1. 06
6 0.26681 0.27126 -1.67
9 0.24924 0.25271 -1.39
11 0.26642 0.26344 12
0 0.25669 0.26164 -1.93
T 0.28458 0.28087 1.30
8 0.24699 0.24377 1.30
3 0.20186 0.18862 6.56
y 0.22391 0.24470 -9.29
10 0.19933 0.25984 -30.36
me mb ib fx Il
Initial reference system 6. 3% » 16. L s
Optimum system 7.42 98.04 1117 2.72 2.54
New reference system 8. 64. B S 3

Cost/performance value of the optimum system: 323.3087
Throughput of the optimum system: 0.3752

Memory,CPU and system costs: 61.83 59.47 121.30

Relative memory parameter costs: 123.41 20.38

Relative CPU parameter costs: 10.47 31.42 42,43 5.00 15,00

. Niadas

73

iteration of the global procedure. Not shown is the application of the
stopping rule, or the possible run of the low-level model for the new
reference system, for future calibration. The cost and cost/performance
values of the locally optimum system are shown purely for illustrative
purposes. The relative memory parameter costs are the costs of memory cycle
time and memory banks, respectively. The relative CPU parameter costs are
the costs of the instruction unit (without loop-mode), the fixed point unit,
the floating point unit, loop-mode and the fixed CPU costs respectively.

In the following sections, we use the following terminology:

1) Convergence sequence: The sequence of reference systems generated

by the global optimization procedure, before oscillation occurred.

2) Sensitivity sequence: The sequence of systems examined, after

convergence, by the individual parameter sensitivity analysis procedure
described in Sec. 4.4.8.2.

3) Sensitivity report: A summary of the sensitivity sequence,

listing the sensitivity of cost, performance and cost/performance to the
various system parameters at the optimum system.

The sensitivity sequence will be shown for only one experiment,
since the others are very similar and, consequently not very informative.

5.5.2 Experiments on EIGEN

The EIGEN program was run on various system configurations
for experiments 1 and 2.

5.5.2.1 Optimization on the 4m = 1 hyperplane

Since EIGEN was the first trace that the experiments were tried
on, the optimization was run for three different starting points on the im=1

hyperplane, in an attempt to establish confidence in its convergence.

e o SR

96

5.5.2.1.1 Experiment la:

Table 5.5 lists the convergence sequence with the starting point
at the normal system (parameters: 12, 16, 8, 1, 3) on the 4m = 1 hyper-
plane. Notice that the mere repetition of a calibration point as a
reference system does not indicate oscillation. Thus the repetition of
system 18 on iterations 1l and 13 does not constitute an oscillation,
because iteration 12 introduces another reference system, 60, for possible
inclusion in future calibration sets, which may change the analytical
model based at system 18. That this does happen is shown by the fact that
the model in iteration 14 yields a new reference system, 6l. Thus a pair
of reference systems must be repeated twice in succession for an oscillation.

Table 5.6 lists the sensitivity sequence for this experiment. The
sequence starts at the better of the two systems involved in the oscillation

that ended the convergence sequence. Parameters are perturbed individually

and the base system is changed if a decrease in cost/performance is achieved.

The procedure is continued until a pass through all the parameters causes no
change to the base system.

The optimum system reached is (6, 32, 8, 3, 3). It is interesting
to note that the optimization procedure reaches an oscillation hypercube
containing the optimum value for all the system parameters except f4.

Table 5.7 which lists the sensitivity report for this experiment, shows
that the projections of both the performance and cost surface (and conse-
quently the cost/performance surface) onto the fL coordinate hyperplane are
quite flat in the region f4 = 2 to 3. We believe that this slope is
within the regression error bounds of the procedure, thus causing the

optimization error. We discuss this further in Sec. 6.3.1.

SRENPES

=
97 3
3
Table 5.5 - Convergence Sequence for Experiment la on EIGEN i
Iteration Reference Reference System Parameters
System .
| me mb ib x fl
|
| 0 0 12 16 8 1 3 {
1 54 6 32 16 2 2
2 55 8 64 8 3 3
3 98 7 128 16 3 3
3 4 99 9 64 8 2 3
’ , g 100 9 128 16 3 3
| 6 101 10 256 8 3 2
7 58 6 128 16 3 1
8 28 5 64 8 3 2
: 9 36 8 128 16 3 1
10 102 9 64 8 3 2
1l 18 6 32 16 3 1
, 12 60 8 6u 8 3 2
'; 13 18 6 32 16 3 1
f 14 61 8 16 8 3 2
§ 1S 18 6 32 16 3 1
16 15 7 6u 8 3 2
: 17 18 6 32 16 3 1
18 15 7 6u 8 3 2
Oscillation
Hypercube 6:7 32:64 8:16 3 s

Table 5.6 - Sensitivity Sequence for Experiment la on EIGEN

98

System System Parameters Cost/Performance
me mb ib fx £
Base --> 15 T 64 8 3 2 303.29
63 6 64 8 3 2 299.98
60 8 64 8 3 2 309.23
28 5 64 8 3 2 303.63
Base --> 63 6 6u 8 3 2 299.98
72 6 32 8 3 2 296.21
73 6 128 8 3 2 311.54
T4 6 16 8 3 2 37D
Base --> 72 6 32 8 3 2 296.21
75 6 32 4 3 2 368.07
76 6 32 16 3 2 313.45
T 6 32 8 2 2 327.19
78 6 32 8 3 1 297 .33
79 6 32 8 3 3 291.72
Base ==> 79 6 32 8 3 3 291.72
End of Pass 1
Base --> 79 6 32 8 3 3 291.72
88 5 32 8 3 3 294.19
89 7 32 8 3 3 295.69
95 6 16 8 3 3 306.26
108 6 64 8 3 3 294.93
96 6 32 y 3 3 369.3U4
27 6 32 16 3 3 309.06
97 6 32 8 & 3 323.46
72 6 32 8 3 2 296.21
End of Pass 2
Optimum
System 6 32 8 3 3

99

i 0°0 2L 162 0'0 €9 °nel 0°0 2Len°o0 i 13 8 ¢t 9 6L
G'L+ 12°96¢ ¢ e~ Bl lel g*t= Liin"0 G € 8 cE 5 ci.
1 G i*® §E° L6 2%e~ LG*gel §°G6- 8tOw"0 L 3 8 2 9 8L
0°0 2L 162 0°0 €9 hel 0°0 2leh0 € 3 8 c¢ 9 6L
: 6°0L+ 9n-€cE £'e~ gL'igl 6°LL= G9LE°O0 € 4 8 2t 9 L6
6°6+ 90°60¢ G0+ 02°62l 2°6- LS0Kh°0 ¥ € 9L 2¢€ 9 Le
0°0 2L 162 0°0 €9 h2l 0°0 cleh’ o € € 8 ¢t 9 6L
8°92+ ht 69¢ 2°0~ HE'hel ¢ ilg= L9EE"0 = € h ek 9 96
8 h+ 6L°60¢E & 9% [Lt*etl £°L+ 62ERTO £ £ 8 gclL 9 €61
L*L+ £6°H62 Loigds et Lel 0L+ ELER"O € € 8 9 9 801
0°0 2L 162 0°0 €9 hel 0°0 2Leh°o0 ¢ € 8 2t 9 6L
g°a* 92°90¢t 0°1~ nht't2l L°G9= L20h°0 4 € 8 9L 9 S6
'L+ 69°66¢ 6 E~ gl*6Ll g g~ 150570 2 € 8 " S 68
0°0 2L 162 0°0 €9°nel 0°0 2leh’o 13 € 8 2t 9 6L
6°0+ 6Ll 162 8w+ <26°0€lL c'h+t 0Ghh™0 € 3 8 2¢€ S 88
wnwtado wnwiydo wnwtddo
wo Jj wo JJ wodJd J
98ueyoy TeEN3OY 23ueyoyg Tenj3oy adueyoy T1enj3oy IJ XJ QI quw ouw
90UBWJOJUDJ/3S0) 1S0) 20UBWJIOJUD(sJdajauweded wajsAg wa3sAg

(£°€'gee’9)

NIOId uo qr pue e[sjuswfaadxy 103 3xodsy AJTATITSUSS - /°G d1qe]

wa3sAg wnwigdg

"

L oy

b ot

100

5.5.2.1.2 Experiment 1lb

In this experiment, the procedure was purposely started at a
point very far away from the optimum reached by experiment la - viz.
(18, 8, 4, 1, 1). Table 5.8 lists the convergence sequence for this
experiment which eventually reaches the optimum system (6, 32, 8, 3, 3). In
this experiment, the procedure reaches an oscillation hypercube containing
the optimum value for all the system parameters except mb. The sensitivity
report in Table 5.7 (the same as for experiment la), indicates that the
projections of the cost, performance, and hence cost/performance, surfaces
onto the mb coordinate hyperplane are also very flat in the region mb = 32
to 64. We believe this, too, to be within the regression error bounds of
the procedure.

5.5.2.1.3 Experiment lc

In this experiment, the procedure was started at yet another
peint on the 4m = 1 hyperplane (18, 16, 8, 1, 3). This is one of the points
in the initial calibration set. Table 5.9 lists the convergence sequence
for this experiment. It will be observed that the optimum hypercube reached
is substantially different from experiments la and lb, in the mc dimension,
10:11 against 6:7 and 5:6. The reason for this becomes clear from looking
at the sensitivity report for this experiment in Table 5.10. The system
(10, 32, 8, 3, 3) is seen to be a locally optimum system, on the evidence of
the rough analysis conducted by the individual parameter sensitivity procedure.
Figure 5.1 is a plot of the projections of the performance and cost/perfor-
mance surfaces onto the mc coordinate hyperplane, with the other parameters
fixed at (32, 8, 3, 3) respectively. The plot clearly shows the anomalous

behavior of the cost/performance surface, along the mc dimension that led

the procedure to find a local optimum in this experiment.

101

Table 5.8 - Convergence Sequence for Experiment lb on EIGEN

Iteration Reference Reference System Parameters
System -
me mb 1b fx fl
0 32 18 8 4 1 1
1 103 21 16 8 i 1
2 104 24 32 16 2 1
3 54 18 6u 32 3 1
4 105 13 128 16 2 2
5 106 15 6u 32 1 3
6 107 10 32 16 2 2
7 108 6 64 8 3 3
8 109 8 32 16 3 3
9 108 6 64 8 3 3
10 110 8 128 16 3 3
11 108 6 64 8 3 3
12 111 8 32 16 2 2
13 12 6 64 32 3 1
14 111 8 32 16 2 2
15 113 7 16 8 2 3
16 27 6 32 16 3 3
17 13 73 64 8 3 3
18 69 6 128 16 3 3
3 19 28 5 64 8 3 2
E 20 96 6 32 4 3 3
21 114 5 64 8 2 2
22 115 y 128 16 3 3
: 23 28 9 64 8 3 2
; 24 69 6 128 16 3 3
25 28 5 64 8 3 2
3 26 69 6 128 16 3 3 |
Oscillation

Hypercube 5:6 64:128 8:16 3

n
w

Table 5.9 - Convergence Sequence of Experiment lc on EIGEN

Iteration Reference

Reference System Parameters

System

me mb ib - fx fl
0 3 18 16 8 1 3
1 116 12 32 16 2 2
2 117 7 64 32 3 3
3 12 9 32 16 2 2
n 13 T 6U 8 3 3
5 56 6 128 16 3 3
6 118 10 64 8 2 3
7 56 6 128 16 3 2
8 119 10 64 8 3 3
9 120 6 128 4y 3 2
10 121 9 6u 8 3 3
11 122 11 32 16 3 3
12 123 14 64 8 3 2
13 124 12 128 16 3 3
14 125 13 64 8 3 3
15 126 14 128 16 3 2
16 127 10 64 8 3 1
17 128 9 128 y - 2
18 129 10 64U 8 2 1
19 130 11 32 16 3 2
20 131 10 64 32 3 il
21 132 11 32 16 3 1
22 133 10 64 8 3 2
23 134 11 32 16 2 1
24 135 12 16 8 3 1
25 136 13 32 16 3 2
26 137 12 6u 32 3 1
27 138 13 32 16 3 1
28 139 12 16 32 3 2
29 134 1 32 16 3 1
30 133 10 6u 8 3 2
31 134 11 32 16 3 1
32 133 10 6u 8 3 2

Oscillation
Hypercube 7700 5% 1 R e * 16 3 £

102

103

0°0 8L°90¢ 0°0 co'otLt 0°0 98G¢£°0 € £ 8 2t 01 Lt
R L* 00°LLE 9 2= LL°LOlL 6°€- 9whE°O c € 8 2t 0l Ghl
0°0 8L°90¢ 0°0 co'ott 0°0 986¢£°0 3 3 8 ¢k 01 Ll
9°L+ 90°0¢t¢t gtg= LU LOL G°6- Lhet o 3 c 8 ¢t ol 6hl
L'L+ Gl 0L¢ S0+ 6G°0L1I 9°0- 995£°0 € € 9L ¢2& ol 8hl
0°0 8L°90¢ 0°0 co'olLl 0°0 98G6E°0 € € 8 ct 0L Ll
2 at* 9L°LZh G20~ hl'601 th°82- 6942°0 £ 3 h "4 T (] Lul
h°0+ 96°L0¢ h*c+ 09°2ll 0°¢+ 9499¢£°0 13 € 8 9 Ol 611
0°0 8L°90¢ 0°0 coott 0°0 98G£°0 € £ 8 ct ol Ll
9°0L+ O0E£°6EE ¢'l= §&L°801 9°0L- 602E°0 ¢ ¢ 8 9L 0l 9nl
€+ w2 LLE 1'2= ¢L°lol €°6- 96¢£€°0 ¢ 3 8 ct Li tihl
0°0 8L°90¢ 0°0 co"olLlL 0°0 98GE€°0 ¢ 3 8 2t ol Ltl
ittt E6°0LE g+ L el L1+ 629€°0 € £ 8 2 6 Ehl
1
wnwijdo wnwijdo wnwtgdo
woJaJ wouJJ woJ g
a3ueyoy Tenj3oy 93ueyoy Tenj3oy adueyoy T[enj3oy IJ XJ q1 qQquw ou
aouBWJIO0JUdd/3S0) 3S0) 2ouUBWJIOJ U] sJajauweded walsAg wajsAg
(e‘€‘geeol) : wayshg wnurldo |

NEOIF uo o1 3juawrpaadxg 103 souanbag adusBisauo) -~ Q1°G 2a19el

L

104
ey i e T g Py T Q.50
o Performance
400 A Cost/Performance
390 X
™ LY
e Normal Sys’rem/vA =043
3801~ "\
h\
3701 N
\
§ 360~ h\ —0.40
S N\ =
& - S
$ 350 Q\ 2
g AN S
= R Jozs &
8 330 A :
. Sl B
320
: i § 030 .1
? : 300+
290} Normal System
b SRS TR, N RN, S bk SNt QU g
[2803 4 5 6 T8 9 N 11 B
mc FP-5740
Figure 5.1 Projections of performance and cost/performance

surfaces onto the mc coordinate hyperplane for
EIGEN.

e

et e
sda

4

105

We believe that the main reason for the procedure arriving at
this secondary local optimum, is the shortening of the mc grid metric
just when the procedure happened to be exploring the region of the secondary
(local) optimum. The purpose of gradually shortening the mc grid metric
was to force the procedure to maintain a global perspective during the
initial stages, when it has a very small calibration set, but to increasingly
localize its perspective as the possible choices for the recalibration set
increase. For experiment la and lb, this shortening happened when the
procedure had reached the region of the global optimum of Figure 5.1. For
experiment lc however, some regression error resulted in the procedure being
nearer the local optimum, when the mc grid metric was being shortened. This
can be seen by comparing the mc values of the reference system on iteration
12 of the three experiments - they are 8, 8 and 14 respectively. Localizing
the perspective then rendered the procedure incapable of looking beyond the
region of the local optimum.

The performance and cost/performance of the normal system are also
indicated on Figure 5.1 to illustrate the flatness of the cost/performance
surface near the optimum along the mc dimension.

Here again, the error of experiment 1 along the f{ dimension has
re-occurred, and for the same reason.

5.5.2.2 Experiment 2: Optimization on the 4m = O hyperplane

This experiment was conducted by running EIGEN on systems that
had the loop-mode feature turned off (dm = 0). The starting point was the
otherwise normal system (12, 16, 8, 1, 3). Table 5.11 lists the con-
vergence sequence for this experiment and Table 5.12 is the sensitivity
report at the actual optimum system (6, 32, 8, 3, 3). The oscillation

hypercube reached by the procedure does not contain the optimum value for

_—

L- | Table 5.11 - Convergence Sequence for Experiment 2 on EIGEN
i Iteration Reference Reference System Parameters
k| System
! me mb ib fx £l
1 0 1 12 16 8 1 3
LlL | 1 38 9 32 16 2 2
: 2 39 6 64 8 1 1
3 40 iy 128 16 1 2
y 41 B 64 8 2 3
5 u2 6 32 y 3 2
6 43 5 16 8 2 1
7 uy 6 32 16 3 1
{ 8 45 5 16 32 2 2
3 9 16 4 32 16 1 1
10 43 5 16 8 2 1
11 u7 6 32 4 3 1
! 12 48 - 6u 2 2 2
1 13 u9 6 32 4 3 3
14 57 ' § 16 2 2 2
{C 60 8 32 4 3 1
16 61 9 64 8 2 2
, 17 62 8 128 16 3 1
; 18 63 9 64 32 3 1
p 19 12 8 32 16 2 2
20 64 7 64 8 3 3
i 21 65 8 32 16 3 3
_ 22 64 7 6u 8 3 3
’ 23 66 8 128 16 3 3
24 67 9 64 8 3 2
22 66 8 128 16 3 3
E 26 67 9 64 8 3 2
|
E Oscillation
E Hypercube 8:9 64:128 8:16 3 evs

106

r~
=
0°0 86 hOE 0°0 gL 12l 0°0 866¢ "0 ¢ ¢ 8 et 9 6L
6°0+ 6£°L0¢E g g~ E6° 811 ¢'€- 698£°0 4 3 8 c¢ 9 €L
L0+ 6L°90¢ Lig=rrger LI i h— 128E’0 L 2 8 2t 9 8L
0°0 8G hOE 0°0 gL L2l 0°0 866£°0 3 € 8 2t 9 6L
e o* 1975kt E*¢~ E6°9L1 L*LLt= hhGE'O 3 A 8 2t 9 S8
9°6L+ Lk h9E G'0+ G£eal B 9= LSEE"D € ¢ 9L 2¢ 9 t8
0°0 8G9 HOE 0°0 8L L2l 0°0 866¢ "0 £ ¢ 8 2t 9 6L
0°12+ E£n°89¢ 2'0- 6h°Lcl S*LL- 862£°0 € € h " T 6h
A
9°¢€+ 6G°GLE h"9+ 297621 L2+ twoLh'0 3 3 8 gcL 9 L8
h 0+ 88°60¢ L*2+ 9€ el L+ 990K°0 € ¢ 8 #9 9 £8
0°0 8S HOE 0°0 gL L2l 0°0 866¢ 0 E € 8 et 9 6L
8°G6+ 61l°2¢c¢ L*Ll= 6h°0CL G°9- Ohit'0 £ 3 8 9L 9 4]
9°€+ 6G°GLE e"l=~ S0°E4 E°tl- B9Kt'O 3 ¢ 8 " T 98
gee+ LO'LLE 0°a~ E8°9L1 9°9- GELE"O £ E 8 ce L L8
0°0 86 hoEt 0°0 gL Lcl 0°0 866£°0 ¢ £ 8 2t 9 6L
9°0+ ¢26°90¢ 24+ L0°8cl S h+ QLLKH'O £ ¢ 8 4 .- 08
wnwigdo wnwtgqdo wnwyijdo
wodJjJ wouJ wouJ
28ueyoy 1EN3OYy a3ueyoy Tenioy a83ueyog T1en3oy IJ XJ Q1 qu ouw
90UBWJIOJUDJ/3S0) 1s8¢C) SouUBWJI0JUISd sJaajauweded wajysAg wajlsAg

(£°€‘g‘2€g) : wagysAg wnwiadp

NE9IHT uo g juswraadxy 103 3xoday AITAFITSUIS - Z1°G 91qel

e it i FPPRLRESRANS WY FECPIGPNT SVSRET DRSPS S SR, B O S SRR e

108

two-dimensions - mc and mb. In both cases, the flatness pof the projections
of the cost/performance surface onto the coordinate hyperplanes are seen to
be quite small, and are possibly within the regression error bounds of the
procedure.

5.5.2.3 Analysis of the optimum architecture for EIGEN

Experiments 1 and 2 show that the optimum system for EIGEN is
(6, 32, 8, 3, 3) on the 4m = 1 hyperplane. We now analyze this architecture
in more detail.

5.5.2.3.1 Orthogonality of the cost/performance surface

The shape of the cost/performance surface seems to be fairly
orthogonal with respect to its system parameters. This is illustrated by
the fact that the optimum system is (6, 32, 8, 3, 3) on both the 4Zm hyper-
planes. Further, the local optimum reached in experiment lc, was different
i in the mc dimension (10 as opposed to 6). But this did not affect the
optimum values for the other parameters, viz (32, 8, 3, 3). This seems
to indicate that there is very little interaction between the parameters
near the optimum on the cost/performance surface.

5.5.2.3.2 Instruction unit issues

Loop-mode is indeed cost effective by to a surprisingly small
extent. Thus in the optimum system (6, 32, 8, 3, 3), removing loop-mode
causes a performance and a cost/performance degradation of only 6.47% and
4.4%. We expect that this difference would be even smaller, if a cache,
which is a cost-effective technique of achieving an even lower memory
cycle time, were used. The small contribution that loop-mode makes to
performance also explains why the optimum system on both the 4m hyperplanes

had the same values for the other system parameters, viz (6, 32, 8, 3, 3).

N__________m N — . |

109

In particular, it is intexesting that the optimum ib value is
8 on both the 4m hyperplanes. The choice of the most cost-effective
value of ib involves a tradeoff between three factors. The necessity to
maintain a degree of look-ahead sufficient to ensure a high instruction
supply bandwidth, demands a high value of ib. So does the possibility of

holding increasingly larger instruction loops in the buffer with loop-mode

e

However, the occurrence of branches renders a number of prefetched instruc-
tions superfluous. Since the fetching of these instructions uses critical
resources such as memory banks, the high occurrence of superfluity argues
for a low degree of prefetch, i.e., a low value for ib. We will illustrate
this tradeoff on EIGEN. :
With Zm = 0, the buffer is used solely to hold prefetched instruc-
| tions. The optimum value arrived at for ib is 8. Table 5.12 indicates
that reducing ib to 4 degrades performance by as much as 17.5%, because
it drastically reduces the instruction supply bandwidth. However, 3
increasing ib to 16, causes a comparable degradation in performance (16%)
due to the increase in superfluity. Thus ib = 8 represents the choice
that best trades-off these two factors.
With 4m = 1, loop-mode enters the tradeoff considerations. But
here again, the optimum choice for ib is 8. Table 5.7 shows that if
ib = 4, the buffer is neither large enough for an adequate instruction
supply bandwidth in non-looping situations, nor is it large enough to hold
any loops (the buffer can hold 4* ib bytes of instructions - see Table 5.1) -
hence the performance degradation of 21.27. However, increasing ib to 16
also causes a performance degradation of 5.2%. This is despite the fact

that 64.37 (see Table 5.1) of all the looping branches in EIGEN have a

Deides Soraa

110

target distance of less than 64 bytes (against 10.4% for 32 bytes). The
degradation due to superfluity is evidently greater than the increased
bandwidth due to loop-mode. This suggests that loop-mode is really cost-
effective only for small loops, where the branch decision and target

;| fetching time forms a large percentage of the loop execution time.

5.5.2.3.3 Execution unit issues

A high bandwidth fixed point unit is vital for performance. This
is indicated in Table 5.7, by the fact that reducing fx from 3 to 2 causes
an 11.9% degradation in performance and a 10.97 degradation in cost/
performance. On the other hand, f{ has a much smaller effect on system
3 E performance and cost/performance. Thus reducing f£{ from 3 to 2 causes
only a 3.8% degradation in performance and a 1.5% degradation in cost/
a2 performance. This can also be seen from the convergence sequences, where
! fx stays fairly steady at 3, while f{ moves unpredictably over the range

1 to 3.
We believe that this is linked with the fact that the proportion
of fixed to floating point instructions in EIGEN is 1.3:1. We will contrast

this with GAUSS in Sec. 5.5.3.3.

% 5.5.2.3.4 Memory issues

Table 5.7 shows that the latency of the memory has a greater
influence on performance than its bandwidth, Thus increasing the number
of banks from 32 to 64 (128), causes a mere 1.07% (1.3%) improvement in
E performance. This suggests that the number of memory conflicts has not
decreased substantially upon increasing mb. However reducing mc from
6 to 5, causes a performance improvement of 4.2%, which is substantially

more than the effect of mb.

111

5.5.3 Experiments on GAUSS

Experiments 3 and 4 deal with the GAUSS program run on various
system configurations.

5.5.3.1 Experiment 3: Optimization on the 4m = 1 hyperplane

Table 5.13 lists the convergence sequence for this experiment,
with the starting point at the normal system (12, 16, 18, 1, 3) on the
4m = 1 hyperplane. The procedure converges fairly rapidly compared with
the EIGEN experiments. It is also interesting to observe that the procedure
examines a much larger range (8 to 128) along the ib dimension than it did
for EIGEN (8 to 32). This is because of the greater effect of loop-mode
which we discuss in Sec. 5.5.3.3.

For this experiment Table 5.14 lists the sensitivity report about
the final optimum (4, 16, 16, 3, 3). Thus the oscillation hypercube
reached by the procedure does not contain the optimum value for two-
dimensions - mc and fx. Here again, the flatness of the cost/performance
surface projections onto the coordinate hyperplanes possibly explains the
errors - since the slopes seem to be within the regression error bound: of
the procedure.

5.5.3.2 Experiment 4: Optimization on the 4m = O hyperplane

In this experiment, conducted using systems on the 4m = 0 hyper-
plane, the otherwise normal system (12, 16, 8, 1, 3) was again used as the
starting point. As in the previous experiment, the procedure converged
fairly rapidly. The convergence sequence is listed in Table 5.15. 1In
direct contrast to experiment 3, the ib range examined was very small and
in the opposite direction from experiment 3 (2 to 8).

For this experiment, Table 5.16 lists the sensitivity report

about the optimum system (4, 32, 4, 1, 3), The oscillation hyper-

.

112

Table 5.13 -~ Convergence Sequence for Experiment 3 on GAUSS

Iteration Reference Reference System Parameters
System

mc mb ib fx i

| 0 0 2 16 8 1 3

1 12 13 32 16 1 2

2 13 8 16 32 1 3

3 14 6 B2 6U 1 2

E 4 15 7 16 128 1 3

| : 16 9 32 64 i 2

6 17 8 64 128 1 3
] 7 14 6 32 64 1 2
E : 8 15 7 16 128 1 3
‘ 9 18 5 32 128 1 2 |
10 19 6 16 6u 1 3 |
11 20 7 32 32 1 3 ‘
12 19 6 16 64 1 3 é
13 21 2 32 32 1 3 i
: 14 22 6 16 16 1 3 |
; 15 23 5 32 8 1 3 j
: 16 22 6 16 16 1 3 |
E 17 21 5 32 32 1 3 ‘

F 18 22 6 16 16 1 3
19 21 5 32 32 1 3 J

:
Oscillation
Hypercube A (o S I e 1 3

1{-« .ﬂ N T T L) R N S T T YT by) e D Laaa Db o A lalg oAbl o bl Saudd b ALE AN S B~ e o dub s g’ e dioit SURE S i L 2 i 2 Seb s i - — r~ ——

113

0°0 GO h8h 0°0 08°8€l 0°0 8982°0 € € 91 91 % Lt *
L 0L+ G6°GES L*2= G6°GElL G*ll= LESZ'D c € 9L 91l H 8h
; 0°0 G0 h8h 0°0 08°8EL 0°0 898c°0 ¢ 13 9L 9l h Lt
1 L0+ 6k w8k 12— 66°6¢l ¢'¢- 9082°0 3 c 9L 9L 6€ 3
4 L*#+ Ol 1709 gt~ he'nkl ¢ l= £992°0 € L 94 91 & Lh
£°6+ 497606 8°0+ Hh6°6EL €'h= 9hl2 0 ¢ £ 2¢ 9L 9f
0°0 S0 h8Hh 0°0 08 8¢l 0°0 8982 0 ¢ € 91 9L k Lk
9°L2+ HhE'88S h"0=- €2°8¢€l L*8L= 0%€2°0 € € 8 gL h Sh
€70+ 9G°G8h 60+ 60°0hl 9°0+ 688270 ¢ ¢ 9L 2¢&€ hh
0°0 S0 " hBh 0°0 08°8¢EL 0°0 8982 °0 ¢ 3 91 9% - % Lk |
G'L+ 2L L6Hh S°0-~ 91°8¢€lL 0°¢c- ¢2lge’0 € € 91 8 li§ Eh
0w+ O0Oh°E0G LOl~ 16°Ecl ¢ hl= L9we°0 ¢ £ 9 9L 9 6h
0°L+ 88°06h 29~ 02°0¢l G*L=- 2692°0 3 € 9L 91 & %9
0°0 S0 h8h 0°0 08 8¢l 0°0 898¢°0 € € 9L 9L h Lt
26+ 09°82S 26+ 897146l 0’0 8982 °0 € € 9L 91 & ch
wnuwtldo wnwtado wnwtydo
woJJ wouJJ woJ J
93ueyoy TeNnloy 983ueyoy T[enj3oy adueyosy Tenjzoy IJ XJ QT quw Ou
92ouUBwWJOJIAdd/3S0) 1S0) 0oUBWJIOJJD] sJdajsaueded walsAg waSAg

(€°€°91L°9gL ‘) : wagyshAs wnutadQ

SSNVY) uo ¢ juawpaadxy 103 3xoday AITATITSUSS - HI*9[qe]

114

Table 5.15 - Convergence Sequence for Experiment 4 on GAUSS

‘ Iteration Reference Reference System Parameters

% pian sl me mb ib fx £l

0 1 - 12 16 8 1 3

1 12 9 32 4 1 2

2 13 6 16 8 1 1

: 3 14 5 32 4 2 2
1 u 15 7 64 8 1 3

! 5 16 5 32 y 1 3

k. 6 17 6 64 8 1 :
“ . 7 16 5 32 " 1 3
8 18 y 64 2 1 3

9 19 6 32 4 1 2

10 20 5 64 8 1 3

{1 21 6 32 y 1 3

12 20 < 64 8 1 3

13 21 6 32 4 1 3

Oscillation

Hypercube G:6 32:64 4:8 1 3

115

SSNvH uo # juswyiadxy I0J 3aoday AITATITSUSS - 97°G dI1qel

Ll hlS 0°0 €8 LEL 9622°0 3 l h 2t h 43
ch*cc9 22~ 86782l cL020 C l i "5 W Oh
£0°989 G g+ 6E£°9EL Lege o 13 ¢ h et & Lh
6.°085 £°L+ hG EEL 66220 3 4 h 2 h 6¢
Ll hlS 0°0 €8 LEL 9622°0 S § h 2t n 43
91 °66% 2°0+ LlL-ctl 0céec’0 € l 8 2€ h 8¢
Ll hlS 0°0 €8°LEL 96220 € h 2¢€ h 2t
L' he9 L0~ 69°LEL 6012 0 £ c 2t h he
68284 0°C+ Lh "hEL 90£¢°0 £ z k9 & 8¢
Ll tlS 0°0 €8 LEL 9622°0 3 Lij 2€ h et
62°9LS G L= H5T0%L G9¢22°0 3 f 9L LE
65" h29 €Ll €6°91L1L 2L8L°0 € L i et 9 Le
86°2c64 59~ <e2'kZl 8L02°0 £ l h 2t S 91l
Ll tlLs 0°0 €8 LEL 962¢°0 ¢ L Li§ 2€ h 43
28°629 L 6+ 09 tunl 962¢°0 £ L tr et E G€
wnwtado
wodJjJ
Tenjoy a3ueyoy t(enjoy TEN3OV qu
90UBWJIOJUDd/3S0) 1S0) QouewJdoJJaad sJajauweded walsAg wa3sAg
(ELr‘2En) wajlsAg wnwigdo

116

cube thus does not contain the optimum value of the mc parameter for the
same reason as the one given in experiment 3.

5.5.3.3 Analysis of the optimum architecture for GAUSS

Experiments 3 and 4 indicate that the optimum system for GAUSS
is (4, 16, 16, 3, 3) on the 4m = 1 hyperplane. We now analyze the results
of these experiments in greater detail.

5.5.3.3.1 Non-orthogonal nature of the cost/performance surface
for GAUSS

The results of experiments 3 and 4 indicate that the cost/per-
formance surface departs much further from orthogonality with reference
to its system parameters for GAUSS than for EIGEN. This can be seen from
the different optima reached for the 2 Zm hyperplanes. Thus:

a) With the increase in the instruction supply bandwidth due to
the addition of loop-mode (4m = 0 to 4m = 1), it becomes cost-effective to
have a high bandwidth fixed point unit (fx = 1 to fx = 3). Further,
with the demands made on memory for instruction fetching being reduced,
the memory bandwidth can be reduced (mb = 32 to mb = 16).

b) The interaction between 4m and ib is also clearly brought
out and will be discussed further.

c) The sensitivity sequence for experiment 3 revealed that, while
at a lower memory bandwidth (mc = 5), it is more cost-effective to have a
low bandwidth fixed point unit (fx = 1) than a high bandwidth unit (fx = 3),
the reverse is true when the memory bandwidth is increased (mc = 4). This

can be seen from the cost/performance figures listed in Table 5.17.

117

.....__,

—)

Table 5.17 - Interaction Between mc and fx on the Cost/Performance

Surface for GAUSS on the 4m = 1 Hyperplane

System System Parameters Cost/Performance

Ll S St B

me mb ib fx £1

‘ 24 g 16 7 56 1 3 502.37
‘ 26 B 16 16 1 3 504.10
33 5 16 16 3 3 490.88
41 4 16 16 3 3 484.05

Badimntd Lo g

118

5.5.3.3.2 Instruction unit issues

Loop-mode has a much greater impact on system performance for GAUSS
than for EIGEN. Thus, the optimum system on the 4m = O hyperplane is 20%
worse in performance and 18.67 worse in cost/performance than the optimum
system on the 4m = 1 hyperplane. This is also evident in the different
optima reached on the two hyperplanes.

The instruction buffer tradeoff discussed earlier is brought out
with great clarity for GAUSS. With 4m = 0, ib = 4 is found to be the best
tradeoff between prefetching and superfluity. The smaller degree of pre-
fetch for GAUSS than for EIGEN, &4 against 8, is clearly related to the
higher percentage of branches in the former (15.35% against 8.20%). This
greatly increases the superfluity effect, forcing a low degree of prefetch.
With 4m = 1, ib = 16 is the best tradeoff between prefetching and loop-mode
on the one hand and superfluity on the other. This is despite the fact
that 95.2% of all the looping branches in GAUSS have their target distances
less than 128 bytes (corresponding to ib = 32), against 33.3% for 64 bytes
(ib = 16). This again illustrates the fact that loop-mode is cost-effective
only for small loops. On the other hand ib = 8 is not sufficient, since
only 5.1% of the looping branches have their target distances less than
32 bytes,

5.5.3.3.3 Execution unit issues

The relative importance of the two execution units is reversed
in GAUSS, with respect to EIGEN, with the floating point unit gaining in
prominence. This is seen from the convergence sequence of Table 5.15,
where fx and f{ stay steadily at 1 and 3 respectively. Further, the

sensitivity report shows that decreasing fZ from 3 to 2 causes performance

i

119

and cost/performance to degrade by 11.5% and 10.7%, against 2.1% and
0.1% for a corresponding change in fx.

Exactly the same observation can be made as for EIGEN - this
relative importance is linked to the proportion of the two types of
instructions in the program. For GAUSS, the proportion of fixed to
floating point instructions is 0.83:1 against 1.3:1 for EIGEN.

5.5.3.3.4 Memory issues

A curious phenomenon occurs with GAUSS - viz. there is absolutely
no performance increase to be had by decreasing mc from 4 to 3. Even
increasing mb from 16 to 32, produces a marginal increase in performance
of 0.6%. This suggests strongly that the bottleneck has shifted to system
areas cther than the memory for this program on the optimum system.

5.5.4 Experiments on ERROR

4 For experiments 5 and 6, the ERROR program was run on various
system configurationms.

5.5.4.1 Experiment 5: Optimization on the 4m = 1 hyperplane

This experiment was conducted using systems on the Zm = 1l hyper-

plane with the procedure started at the normal system (12, 16, 8, 1, 3).
Table 5.18 lists the convergence sequence for the experiment, and Table

5.19 the sensitivity report around the optimum system (7, 64, 16, 1, 3).

The oscillation hypercube reached a value of mc (14:15) which is very

far away from the actual optimum value of 7. Examination of the cost/
performance surface reveals that it is very flat over a wide range of

values for the two memory parameters - mc and mb. This is clearly indicated

in Table 5.20, which lists the cost/performance values for a number of

120

Table 5.18 - Convergence Sequence for Experiment 5 on ERROR

| Iteration Reference Reference System Parameters
‘ System
; mc mb ib fx fl
L 0 0 12 16 8 1 3
1 12 13 32 16 1 3
' 2 18 14 64 32 1 3
| 3 29 16 128 64 1 3
- 4 30 17 256 32 1 3
L 5 31 16 128 16 1 3
8 6 32 17 256 8 1 3
7 31 16 128 16 1 3
8 23 15 64 32 1 3
9 33 14 32 16 1 3
; 10 23 15 64 32 1 3
11 33 14 32 16 1 3
Oscillation

%
g
:
|
i
|
!.

Hypercube 14:15 32:64 16:32 1 3

S
0°0 ¢t 08l 0°0 LE 8L 0°0 19G69°0 € l 9L w9 L hih
L°89L+ €8 h8h h*e- 29°6GlLlL L E£9- €8E2°0 c L 9L ®9 L 2s
S°L+ £0°EBL h*l+ 80°0cl 0°0 1969°0 3 ' 9L K9 L LG
0°0 ch 081 0°0 LE gLl 0°0 L969°0 3 L 9L w9 L tih
L°9+ 06261 0°L+ 1G°6LL h*6- 8029°0 £ l gt 9 1L 0S
0°0 ch’ 081 0°0 LE 8LL 0°0 19G69°0 13 l 9L w9 L hh
L°€+ 00°981 S$°0- 08°LilL 5*E= EEE9°0 t l 8 w9 L 6h
£°c+ 69 h8l h h+ E£6°E2L 0°¢+ ¢2699°0 13 L 9L 82L L gh
0°0 ch 08l 0°0 LE"BLL 0°0 194970 £ l 9L K9 L hh
g'c+ Lh 468l ¢*'e= 6L Gl 8'h= SGh29°0 £ l 9L 2¢ L Lt
L*L+ Oh°Z8l €°€- 6h hlLlL €°h= LL29°0 13 L 9L H9 8 Eh
0°0 ch 08l 0°0 LE"BLL 0°0 L9590 13 L 9L h9 L th
L0+ 09718l L ¥ g2kl R €+ G8L9°0 3 L 9L h9 9 Sh
wnwigdo wnwytado wnuwtjydo
woJj woujJ wou J
a3ueyog T[en3oy 98ueyoy T[en3ody 9dueyoy T[enjoy IJ XJ qt Qu ouw
90UBWJO0JJDJ/3S0) 3S0) souewWJIOJUdd sJuajouweded walsAg wajsAg

(EL°9L“®9*L) : waysAg wnuiado

¥Ou¥d uo ¢ juswyaadxy 103 3xodsy AITATITSUSS - 1°G ATqel

et ———

122
Table 5.20 ~ Cost/Performance Figures for Some Systems on ERROR
Optimum System : (7,64,16,1,3)
System System Parameters Performance Cost/Performance
me ™ mb . ib f£x fI Actual %change Actual %change
from from
optimum optimum
5T 6 32 16 1 3 0.6585 +0.4 183.21 +1.6
59 8 32 16 1 3 0.5885 -10.3 196.17 «+5.4
58 10, 32 16 1 3 0.5169 =-21.2 20813 +13.7
60 12 32 16 1 3 0.4479 =31.7 227.14 +25.9
45 6 64 16 1 3 0.6785 +3.4 181.60 +0.7
43 8 64 16 1 3 0.6277 -4.3 182.40 +1.1
41 10 64 16 1 3 @.5762 =12.2 188.48 +4.5
b5t 12 64 16 1 3 0.5193 =20.9 200.89 +11.4
61 6 128 16 1 3 0.6829 +4.1 187.98 +4.2
40 8 128 16 1 3 0.6401 =2.4 186.93 +3.6
39 10 128 16 1 3 0.6029 -8.1 188.72 +4.6
38 12 128 16 1 3 0.5555 =15.3 197.09 +9.2

123

systems of varying mc and mb values. This flatness of the cost/per-

formance surface causes both the rapid convergence and the error in the
optimum prediction.

5.5.4.2 Experiment 6: Optimization on the fm = 0 hyperplane

Since, as Table 5.3 indicates, ERROR has no looping branches with
a target distance of less than 128 bytes, loop-mode makes no contribution
to system performance in the ranges of ib considered. Thus experiment 6,
which runs ERROR on systems on the 4m = O hyperplane, is essentially
repeating experiment 5 with a different cost function,i.e., with the cost
of loop-mode not included in the CPU cost. However, the procedure was
started at (6, 16, 8, 1, 3) and gave rise to the convergence sequence
listed in Table 5.21. The oscillation hypercube is still far away from

the optimum along the mc dimension, for exactly the same reason as in

-
J experiment 5. Table 5.22 lists the sensitivity report for this experiment.

‘ 5.5.4.3 Analysis of the optimum architecture for ERROR

: The optimum architecture for ERROR is thus seen to be (7, 64, 16,
1, 3) on the Zm = 0 hyperplane. While there is quite a bit of interaction
between the mb and mc parameters on the cost/performance surface, the
surface is fairly orthogonal in the other parameters.

5.5.4.3.1 Instruction unit issues

As seen earlier, loop-mode contributes nothing to performance.
Furthermore, the low percentage of branches (~ 27%) causes a high degree of
prefetch (ib = 16) to be quite cost-effective, with superfluity becoming

dominant only for higher values of ib (above 32).

Table 5.21 - Convergence Sequence for Expefiment 6 on ERROR

Iteration Reference

Reference System Parameters

System
! mc mb ib fx fl
0 2 6 16 8 1 3
1 12 8 32 16 1 2
2 13 % 16 8 1 3
3 14 6 32 16 1 3
} 4 15 8 16 8 1 3
5 16 i 32 16 1 3
6 17 9 64 8 1 3
‘ 7 18 10 32 16 1 3
- 8 19 1 64 8 1 3
9 20 12 128 16 1 3
10 21 13 64 32 1 3
11 22 12 128 64 1 3
12 23 11 64 32 1 3
13 18 10 32 16 1 3
14 19 11 64 8 1 3
15 24 10 128 16 1 3
16 19 il 64 8 1 3
L §j 24 10 128 16 1 3

Oscillation

Hypercube 10:11 64:128 8:16 1 3

125

0°0 80°9L1L 0°0 24 6Ll 0°0 199970 1S 9L w9 L 62
9°89L+ L8°2Llh G'¢g- L9°2lLl L €9- €8€c2°0 e 91 hw9 L 9¢
S'L+ 89°8LL G L+ g2 LLL 0°0 1969°0 ¢ 9L h9 L G¢
0°0 80°9.L1L 0°0 2q all 0°0 19G69°0 ¢ 9L w9 L 62
L9+ L6718l 0°L+ 99°9lLlL h*G- 8029°0 ¢ ZE w8 L he
0°0 80°9.LL 0°0 ARt 0°0 1969°0 ¢ 9L H®9 L 62
L€+ 06°18L G0~ S6°nhlLlL G°E- €€€9°0 ¢ 8 g L £€
h°e+ EE£°08L S'wh+ 89°0c2l 0°2+ ¢699°0 € 9L 8¢l L 2¢
0°0 80°9L1L 0°0 2a 6Lt 0°0 1969°0 £ 9L w9 L 62
L2+ G8°08l 2°'¢- h6'cLl 8= Ghe9'o0 € 9L ¢g2¢ L 9l
0L+ 98°LLL €= K9 LLL Eolp= 1112970 ¢ 91 H9 8 82
0°0 80°9LL 0°0 2q Gt 0°0 1969°0 € 9L w9 L 62
8°0+ O0Oh°LLL 2'h+ LE&°o02lL h"€+ G8L9°0 ¢ 9L w9 9 0¢€
wnwigqdo
wouJj
a3ueyoy T1en3oy TEeNn30Y TEN3Oy qr qu
9oUBWJOJUDd/3S0) 3S0) 90UBWJIOJUdd sJdjaweJded wajsAg walsAkg

(EL9L‘h9‘L)

wa3sAg wnwiadQ

¥O¥yd uo 9 jJuswraadxy 103 3xoday AITATITSUSS -~ ZT°G 21qel

126

5.5.4.3.2 Execution unit issues

The proportion of fixed to floating point instructions, 0.045:1,
is abnormally low in ERROR. Thus it comes as no surprise that fx and £f4
stay steadily at 1 and 3 respectively in the convergence sequence. Even
more dramatic confirmation of this is obtained from the sensitivity report

in Table 5.22. Increasing fx from 1 to 2 yields absolutely no performance

increase, while reducing f{ from 3 to 2, causes performance and cost/per-
formance to degrade by phenomenal figures of 63.7% and 168.6% respectively.

5.5.4.3.3 Memory issues

For ERROR, both mc and mb seem to contribute roughly equally to
performance. This is seen from the sensitivity report in which movements
of 1 grid metric along either the mc or mb dimensions cause performance
changes of the same order of magnitude - 2 to 5%. Since, however, their
coct functions are different, mc and mb can be traded off against each
other. Thus Table 5.19 shows that the (mc, mb) combination of (8, 64) is
more cost-effective than (6, 32), as is (12, 64) over (10, 32). This wide
range of choices for the pair of nemory parameters to yield systems that
have the same cost-effectiveness is what caused the optimization procedure

to faii, as discussed earlier.

5.6 Efficiency of the Optimization Procedure

In this section, we estimate the efficiency of the procedure,
using the definitions of Sec. 4.4.9. Table 5.23 illustrates the calcu-
lation of the T and nL for the procedure in experiment la. Table 5.24

lists the T and nL values for the experiments conducted. As expected,

the efficiency is low in those experiments e.g. 2 and 5 where the oscillation

hypercube was far from the optimum system since more sensitivity analysis

is needed to identify the optimum. On the average, for the experiments

127

Table 5.23 - Efficiency Estimates for Experiment la on EIGEN

Number of low-level model calls
by the ideal procedure

= 3 % 3 % 3 x 2 %2 = 108

Number of low-level model calls

E | by the optimization procedure = 302

Number of low-level model calls

T TN A T - A e T AN 3

by the grid evaluation procedure

= 14 26 23 x3 %3 = 2268

Efficiency of the optimization procedure:
108

= —— = 0.357
L 302

Efficiency of the grid evaluation procedure:

108
M, = —— = 0.048
b 2268

Table 5.24 ~ Efficiency Estimates for the Optimization

Procedure

Experiment Efficiency of Efficiency of

3 optimization grid evaluation
: procedure procedure
E | (ﬂ) (nL)
?
| 1a 0.357 0.048
1b 0.352 0.029
&y 2 0.240 0.032
0.374 0.031
y G271 0.038
5 0.200 0.031
6 0.346 0.G37

128

—r——

129

conducted, the ideal procedure is only 3.3 times more efficient than the
optimization procedure which is 8.7 times more efficient than the grid
evaluation procedure. Thus the optimization procedure is seen to be

quite efficient in this case-study.

5.7 Some Architectural Conclusions

The analysis of the experiments conducted can be used to draw
some broad conclusions with respect to the architecture.

1) The performance of the system is heavily dependent on the
proportion of branches in the programs. Thus the performance of the
optimum systems for the three traces is distinctly correlated with the
percentage of branches in each, as shown in Table 5.25.

2) The best choice of instruction buffer size involves a tradeoff
between increased instruction supply bandwidth due to instruction prefetch
on the one hand, and superfluity and loop-mode on the other. The greater
the proportion of branches, the smaller the prefetch needed. Loop-mode is
cost-effective only with a high percentage of small program loops, where
the branch decision and target fetching time form a small percentage of
the loop execution time. At large buffer sizes, superfluity of prefetched
instructions dominates.

3) The relative importance of the floating and fixed point execution
units is in roughly the same proportion as the percentages of the two types
of instructions in the programs.

4) Memory cycle time has a greater effect on performance than the

number of memory banks.

130

2°9+ €916l L h+ 2£89°0 £ £ 9L 2¢ § udtsaq
0°0 2h 08l 0°0 1969°0 £ L 9L w9 L wnwtidQ 20°e
2'8L+ 8G-1l¢cE L'25= 90ILE'D £ L 8 9L 2L TewJoN
L= 19°6lh 0'h~ ESLEZ"D £ £ 9L 2¢ ¢ udtrsaq
0°0 SO0 hgh 0°0 8982°0 £ £ 9L 9L h wnwtldo GE° Gl SSNYH
2°'29+ £6°hwgl 165~ 2i2\'0 £ L 8 9L 2L TewJON
HO"0+ €8°L62 0°G+ 98kk"O € £ 9L 2¢ ¢ udtsag
0°0 2L L6e 0°0 2len"o £ € 8 2¢ 9 wnwt3do 02°89
i €E+ 0L °68E 6°6E=~ L9620 £ L 8 gL 2t [RWJION
wnwtado wnwtgydo
wouJajJ wodJJ
93ueyoy Tenj3oy 9283ueyoy Tenj3oy IJ XJ qT qu ou
sayoueuJq
9ouUBWJOJJDd/3S0) 2douBwWJAO0JJDd sJasjaweded walsAg wagysAg Jo ¢

swa31s4S snofae) Jjo uosfaedwo) - Gz°G d[qel

131

5.7.1 A Final Design for the System

Let us assume that the program environment for which the system
is designed is characterized by the three program traces used in the
experiments. The final system design must then be a compromise between the
three optimum systems arrived at for the three programs, with each optimum
being weighted by the occurrence of the corresponding program in the environ-
ment. To illustrate this, we develop a compromise design system and
evaluate its performance and cost/performance in the environment.

The flatness of the cost/performance surface for ERROR along the
memory parameter dimensions, suggests that the memory design can be influ-
enced largely by EIGEN and GAUSS. The compromise chosen between (mc = 6,
mb = 32) for EIGEN and (4, 16) for GAUSS was (5, 32). The f4 parameter was
assigned the value 3, since all three programs require this. The dependence
of EIGEN and GAUSS on fx, cause that to be assigned the value 3. In view
of the ib tradeoff discussed in detailed in earlier sections, the compro-
mise adopted was to fix ib at 16, with the degree of prefetch reduced to 8.
Notice that this architecture is not in the space of systems considered by
the optimization, where the degree of prefetch was always equal to ib. The
dependence of EIGEN and GAUSS on 4m, argue for 4m = 1 in the design. Thus
the final '"design'" system was (5, 32, 16, 3, 3) on the 4m = 1 hyperplane.

The performance and cost/performance of the design system on the
three programs is shown in Table 5.25, with the normal system and the
respective optima also shown for comparison. The design system matches the
optimum system for EIGEN in cost/performance and outperforms it, mainly

due to the reduction in me. Its cost/performance value for GAUSS is even

better than that of the optimum system for GAUSS. This is possible because the

132

design system is not in the system space examined by the optimization
procedure. The degradation in cost/performance on ERROR is due to the

reduction in the degree of prefetch and the non-usage of the expensive

fixed point unit.

sl

133

CHAPTER 6

CONCLUSION

6.1 Summary of the Research

In this research, we have introduced the concept of a hierarchy of
system performance models and discussed the characteristics and the con-
struction of such a hierarchy. It was argued that such a hierarchy is a
very useful tool for the cost-effective design of computer systems. A design
procedure that uses this hierarchy was developed. The practicality and the
usefulness of this procedure were demonstrated by applying it to the opti-
mization of a complex computer system - the CPU-memory subsystem of the IBM
System 360/91. In almost all the experiments, the optimization procedure
converged, if not to the exact optimum system, at least to within a very near
region of the optimum. The efficiency of the procedure is considerably more
than that of the worst-case approach to system design, and is not sub-
stantially worse than that of the ideal procedure. Using the procedure yielded

a great deal of insight into the behavior of the system.

6.2 Accomplishments of the Research

We summarize the main contribution of the research in this section.

1) Previous studies in the performance evaluation of computer systems
have tended towards ome of two extremes. At the one end are models in which
reality has been sacrified for the sake of simplicity and mathematical tract-
ability. While such studies do provide some insight into the system being
modelled, their range and usefulness are severely limited because they are so
far removed from realistic computer systems. At the other end are models which,
because of their adherence to detail in the modelling of a specific system,

have very little generality of use.

TN T

T T TS,

.- s , _

134

Our approach combines the tractability of the first kind with the
accuracy of the other. It increases the range of applicability of the
state-of-the-art performance modelling tools, by combining these synergistically
into a powerful tool - the hierarchy of performance modelling tools. The main
ingredients of this approach are the trilogy of calibration, validation and
prediction, the proper use of which ensures accuracy as well as tractability.
This is to be contrasted with most previous approaches to modelling, which
have not laid enough emphasis on the iterative pracess aof validation and
recalibration before using the model for prediction.

2) The second major contribution is the embedding of a hierarchy of
performance modelling tools into a system design (or optimization) procedure.
The conflicting demands of standard iterative optimization procedures, viz,
accuracy and ease of computation, are well matched by the attributes of the
hierarchy. The practical problems with developing such an optimization
procedure have been confronted and a number of issues brought to light.

The success of the implemented procedure on the optimization of the
case-study system is encouraging, and establishes the hierarchy as a viable
design tool.

3) Some insight has been gained into the behaviour of highly pipelined
single instruction stream CPU memory systems. Since the case-study system
is an example of a highly complex computer system, the study leads us to
believe that our understanding of complex systems can be improved by studies

of this kind.

6.3 Suggestions for Further Research
We believe that our study opens up a vast area for further

exploration in the performance evaluation field. We discuss some extensions

T ——

T

135

in the following subsections. First we discuss some specific improvements
that can be made to the optimization procedure developed in Chapter 4.
Then, we discuss more general ideas dealing with the extension and the
application of the hierarchy concept.

6.3.1 Shortcomings of the Optimization Procedure and Suggested Remedies

We believe that the optimization procedure needs to be tuned
further, to weed out some of the errors that come to light during the
experiments. We now discuss some of the shortcomings of the procedure,
and suggest some remedies.

6.3.1.1 Regression error

The experiments clearly show that in regions where the cost/
performance surface has a small gradient along one dimension, the regression
error must be less than this gradient value, for the procedure to converge
reliably to the true optimum along that dimension. One possible way to
reduce the regression error, i.e., obtaining a better fit to the per-
formance surface, is to use a higher order regression model. Thus a

quadratic model would express the response Y in terms of the factors

(Xl,...Xm), using the functional form:
m
Y =B, + z B,X, + £ B, x2+z E B orx.
i=1 i=1 i=1 j=iy1 4 1

Statistical significance tests can be used to include only those factors and
factor pairs that significantly affect the response. The cost of fitting

and using such a model would still be an insignificant fraction of the low-

level model cost.

1

136

We do not, however, recommend increasing the order of the analytical
model indefinitely. Thus a 3Y¥d order model could conceivably be worse than a
2nd order model, because it may introduce an oscillatory model surface, which
creates a number of fictitious local optima. However, most performance curves
do have a second order flavor, which argues for using a 20d order model.

6.3.1.2 Choosing recalibration sets

In the procedure as implemented, when the current reference system
has an extreme value along one dimension, e.g., £4 = 1, only one nearest
neighbor along that dimension, i.e. one with £2 = 2, is needed to estimate
the regression model coefficient along that dimension. Use of only one
other point would disregard any non-linearities that occur on the cost/
performance surface along that dimension. For example, Table 5.12, the
sensitivity report for experiment 2, shows that near the optimum system both
fZ = 1 and £2 = 3 are more cost-effective than f£f4 = 2. Thus, if the reference
system has £2 = 1, it may never look beyond f2 =2, though f4 =3 may well be the
optimum value. This could be remedied by using a higher order model, to better
model the non-linearity of the surface. Thus a quadratic model would need
at least three points along each dimension to compute the best fit, and
f4 = 1,2,3 would have to be considered.

6.3.1.3 Inability to maintain local perspective

when the reference system has moved into a new region, the new
model should not be affected very much by old regions,i.e., local perspective
should be maintained. In the procedure as implemented, this is not always
possible., For example, in experiment 3 on GAUSS (see Table 5.14), by
iteration 6 the reference system has moved to quite a different region from

the initial region. However, to obtain 34 the coefficient along the fx

137

dimension - a calibration system with fx = 2 is required, and the only one
available in the calibration set is (12, 16, 8, 2, 3). However, including
this system in the recalibration set, causes a member of other systems in
the initial set to be included as well, since they are at the same distance
from the new reference system. This distorts the local perspective
enormously, especially along the most sensitive dimension - in this case, ib.
One possible remedy for this effect, is to generate extra calibration
systems when in a new region. Typically, this can be done when it is observed
that too many systems at too great a distance are being included in the re-
calibration set. This method can then be viewed as mingling the sensitivity
and the optimization procedures.

6.3.1.4 Rigid movement rule

Requiring a change in every parameter of the reference system per
iteration, is too rigid a movement rule. While, in the initial stages, it
forces th+ - .ccedure to roughly explore large regions of the system parameter
space, it teuds to cause unnecessary thrashing in the later stages, thus
prolonging the convergence. For example, one of the iterations in experi-
ment la on EIGEN, forced a movement along the mb dimension from 64 to 128,
because the optimum predicted by the local optimization procedure was 64.33.
It is clear that this difference from 64 could have been well within the
regression error bounds of the procedure.

One possible remedy for this problem is to set a lower bound on
the change for each parameter of the reference system. If the change
predicted by the optimization procedure is less than the bound, the reference
system would not be changed along that dimension. These bounds could be

adaptively increased as the procedure converges.

sl

-

TR

WY

e,

138

6.3.1.5 Rigid stopping rule

Requiring the procedure to oscillate between two reference systems
appears to be too rigid a stopping rule. In conjunction with the rigid
movement rule, this caused quite a bit of thrashing in the early experiments
on EIGEN.

A possible remedy is to monitor the change in cost/performance
caused by the reference system movement. When this change goes below a
limit, the procedure can be stopped.

6.3.1.6 Adaptive grid metrics

We believe that the adaptive approach to varying the mc grid metric
is a reasonable one. It is in keeping with the philosophy of maintaining a
global perspective in the initial stages and gradually narrowing the
perspective as the procedure converges to the best region. However, the
problem that arose in experiment lc on EIGEN, may have to do with the actual
implementation of the adaptive approach, as described in Sec. 4.5.2.

A technique similar to the one suggested in the last subsection
may be used to control grid metric reduction. This would use percentage
changes in cost/performance between successive reference systems to estimate
the rate of convergence of the procedure. The grid metric change is computed
as a function of this rate; in fact, it could actually be increased for small
rates of convergence.

6.3.2 Further Research into the Hierarchy Concept and General Issues

The concept of a hierarchy of models for performance evaluation

can be extended in a number of ways:

oy

Lt

bade it

it =

T A T

139

1) Hierarchies of more than two levels should be examined. Thus,
in the two-level hierarchy considered in this study, an intermediate level
that is less expeﬁsive than the low levei model and has a larger range of
validity than the high level model, could increase the cost-effectiveness
of the procedure even further. In fact, in our research, the phase which
consumed the most time and resources was the simulation runs of the low-
level model. Introducing a lewvel of intermediate complexity, e.g., a queueing
hodel, would reduce the demands made on the low-level model even further.
Consequently mor;, and iarger, program traces could be experimented upon,
to build a body of theory for architectures of this type. In general, the
introduction of additional levels should be considered, if large regions
of either complexity or cost are not covered by any model currently in the
hierarchy.

2) In connection with (1) above, the hierarchy concept could be used
on subsystems derived by a structural decomposition of low-level models.
For example, building separate hierarchies for the memory and CPU would
enable combinations of models of different levels of complexity for the
different subsystems to be used as intermediate levels. Thus the inter-
mediate level model could either be a CPU simulation model with an
analytical memory model embedded in it, or vice versa, depending on the
region being explored.

3) While quite a few computer system models have been proposed and
analyzed, very little work has been done in modelling work loads to drive
these system models. The proposal in Sec. 3.4.3.2, to generate synthetic

control streams, based on statistical summaries of program environments

140

is a step in this direction, and should be further exXplored. Parameterizing
workloads will enable studies of the system workload space analogous to this
study of the system architecture space. Thus the optimum workload for a
given system architecture and the sensitivity of the optimum system design
to the workload parameters can be examined.

4) The' techniques developed in this research can be applied to model
and design computers at a higher level. Thus systems can be studied at the
component level of processors, memories, I/O units, etc, besides the CPU
function unit level studied in this thesis. It is our belief that the
basic techniques could be applied, regardless of the level at which the system
is studied.

5) Cost models other than the one used in this research should be
investigated for their impact on system design. For example, using cache
memories makes possible very low effective memory cycle times at low to
moderate costé. The cost model used in this research did not allow for
introducing a cache into the system. Parameterizing cost models, i.e.,
making the cost coefficients for the system parameters variable, will eratle
studies of the sensitivity of the optimum system design to changes in the

cost coefficients. In an era of rapidly changing technology, such studies

are of great importance to the system designer.

-

141

APPENDIX A

Theorem A.1l
1f |a-c| < |a-B| then
: a) A> B iff C > B and
2" B) A<B iffC< B
Proof:
a) To prove that A > B iff C > B:
a.l) Let A>B
Then |A-C| < A-B.
a.l.l) Let A > C.
f Then A-C < A-B.
Therefore -C < -B and thus C ™ B.
a.l.2) Let A< C.
Then C 2> A > B and thus C > B.
Therefore if A > B then C > B.
a.2) Let C > B.
Assume that A < B.
Then |A-C| < B-A.
a.2.1) Let A>C
Then A > C > B and thus A > B,which is a contradiction.
a.2.2) Let A< C
Then C-A < B-A

Thus C < B which is a contradiction.

Therefore, by contradiction if C > B then A > B.

142

Therefore A > B iff C > B.

b) To prove that A < B iff C < B
b.1) Let A<B
Then |A-C| < B-A.
b.1.1) Let A > C.
Then C < A < B and thus C < B,
b.1.2) Let A< C,
Then C-A < B-A and
thus C < B.
Therefore if A < B then C < B.
| b.2) Let C < B. i

Assume that A > B

Then |A-C| < A-B.
i b.2.1) Let A > C. %

Then A-C < A-B.

Therefore -C < -B and thus C > B,which is a contradiction.
b.2.2) Let A L C.

Then C > A > B and thus C > B,which is a contradiction.

Therefore, by contradiction, if C < B then A < B.

Therefore A < B iff C < B.

TR Y S e

143

APPENDIX B

B.l Introduction

In this appendix, we present a listing of the simulator of the
control stream model. The simulator was written in the SIMULA language,
an excellent introduction to which is given in [BIR73]. The system used
was the SIMULA-10 system [BIR74], developed at the Swedish National Defense
Research Institute in Stockholm. The system was run on the DEC-10 at the
Coordinated Science Laboratory of the University of Illinois at Urbana-
Champaign. Execution times of simulator rums ranged from 12 to 40 minutes.

In the listing that follows, comment statements begin with a ‘!’

and end with the first ';' thereafter.

<
<
-

INWNTOD TYHOIINT IWTL IHL 3LVadni 0920

L4[0 LVISHOTHM)LSTHIWIL=:[0 LYLSHOTHM J LSTHIWI L 06520

NWNT0D S3SSIN0¥A-40- 0N FHL ILVadni 00520

NID39 0sh20 fa

‘YVa LYLSHOTHM HIDILNT 00420

fSOILSTLYLS INANYHL SNIVINIVW 34NA3ID0MA SIHLG 05520

(YA LVISHOTHM) SLYLISIWIL I¥na3D0oNd 00§20

0672720

‘YALTYMLISS (NOTIONHLISNI) 43N 00220]
SESANYALTHOANYE [LGh I LIHOLES AVMHY (AYIH)ITY 051720 |

) LHOANOIE “HOGW T4 ' HOGY T4 ‘HONT T4 ' HONIXA ‘HONIXA ‘HO4NGT (AVIH)IFY 00120

CLLSHEL)LSS ISHNYGL]TINAINYG AVHNY HYIT008 05020

: £00YdAaNT ‘IIYIANTA 3FYAAY TS IAYINT TS FYANIXA IIYANIX S LHOAY JAOWJOO0T DIXION * JAONANOD * 3G0IANOD NY¥IT008 00070

fELSH:0)3AYISISS 10 €L JISTHINIL [95:0103XT AVHHY HIDTINI 06610

fATAT4 LSTA INWI dWDTd 01dST3° 01T ATaXS INWY S dWIX A OYX I aT1dSXI aTIXI ISXI VXS YIDTINT 00610

‘YLSTS'HOLIA‘HISLII 109 GLHIA G108 HIVI DAS LVOT3 ANIOVHL ‘HONVHA ‘TS XH ‘Y4 ¥IOILNT 05910

fYAIANYL LSTANE AAVWIW DFUANT ‘ATSOHS ATSHNS ‘ SYWOHS ‘ SYWINS ‘aavHa ‘DVL100“IH0LIS 390040 IdKL HIDIINI 00810

CWHILN ‘WHILT ‘NIDI HIDIINT nGlin

3 f4AANT MOTIVIYA INTTIJIA IVINIS HIDILINT 0010

fIWILTID LHVLSTO HOT 1D OVILXIN ‘OVLIAATLOV IZ1SJ00T LENTLSY T WHILLSY T NIDISVT IWILHY ¥IDIINI 06910

LSSISYT WHALAY ‘WHILWNA ‘WEILWHON INNODWIW NIDWHON NIDJ0O0T INNODDOY¥d ‘HILNNODANG HIDIFLNI 00910

NID3A NOTLVINWIS 06510 z9

00s10

$(14NELNOINIO " LNLNO *(uw KYYWNSW)ITIJINTIHG MIN-:LNLNO (2 1)SHNVIE=:1dnALNO 0GhLD

SCANANT)INIO LNANT “(uw LNANTW)ITIINT MIN-:LNINI 1(0G)SANVIG-: 4NANT oonto

£S3714 IndInO ANy LNdNT 3HLI N340 05£10

00510

$3041 3S73 3STVI NIHL D=T J1=:1DONVNA 06210

CININI=:T ‘IOVWILNONYIYA {(.:3A0M d4007Tw)LIX3LLNO 00210

CININI=:HONVTA '3DVWILNONVING ‘(. :IWNLOILIHOYV LINN LNIOd ONILYOT4w)IXILLINO 0st10

SININI=:HOHYXIA ‘3DVWILNONYINE ¢ (w:3YNLOILIHOYY LINN INTOd a3XIdu)IX3LINO 00LtLn

CININI=:SYIJdng ‘IOVAILAONVINE ‘(w:3ZIS ¥A3ING NOILINHLISNIW)LXILLINO 05010

CININI=:SHNVE ‘IDVHILAONYINE ‘(u:SHNVA XHOWIW 4O HIGWNNW)LXILLINO 00010

19/G431040= 1§53V 06600

LININI=:370K0 ‘IDVWILAONYING ‘(W 3INIL 370A0 ANOWIH.)IXILINO 00600

fSANTYA HILIWYHYA T1300W IHL 1304 05800

noann

fLNALNO (ATTAINTH) 430 ‘ININT (ITTANT) 43N 06100

SHOMYYA NV3IT008 0000

CHONVTA‘HOHYX T4 SSIDOV ATORD SHNVA‘SHIIING ‘04 TN r* 1 ¥ADIINI 06900

f14N9LN0 " 4NENT LX3T 00900

nGssn0

f"WILSAS 3HL NT G3ANTONT 36 OL SI 3AOWd00T 31 3INWL= HONVMHA 00500

*IYNLOILIHOMY LINN INIOd HNILVOT4 FHL : HOHY14 05h00

*IYNIDILIHONY LIND INIO4 A3XIJd IHL : HOMVXIA 00t00

*¥344N8 NOTLONYISNI 3IHL 40 3ZIS 3HL : SHIJ4nE 0S£00

TSANVE AYOW3IW 30 ¥IGWNN 3HL : SHNVY LI

“IWIL 3TDAD AMOWIW IHL : 3T10KD 06200

ISYILIWYNYL 9 SYH LI 00700
“3714 AYYWWNS FHL OINI SOIISILYLIS TNJISN YIHIO ANV LNAHONOYHL NOTLONHLISNI IHL SIndino L1 06100
‘YOLVINWIS T300W WY3INIS TOHINOD 3HLI 00100

‘goWOLll NID38 06000 9

Luitt LL6L=1D0-91 ([L€£2°2fL) WIS 770WaL
! 3oVvd 0S:1L LL6L-100-91 § uorsaap VINKIS 01-wa1s£s)31

AT T .

145

fINNOD $SID0Hd TVIOL FHL dNi fL+LINNODDONA=:INNODDONHL

fXNOLXIN 40 aNnd

‘INUL=:0VI4 IST3 AN

£35T¥4=:9V1d (0 SNYNL) TINATHIS

NID34

N3HL 3NON=/=SNVY¥L JI

CISHIA NIVHI=:SNVHL

SSNYHL (TIOMINOD)43Y
N1D36
£°0Y14 ASNE 30MNOSAY IHL SLIS NIHL 1T
*304N0S3Y V X9 ONISSIIOHd 404 wNIVHOw ISIT ONILIVM 3HL 40 GV3IH IHL SIINAIHIS IYNAINONd SIHLI
ENIVHO (GY3H) 438 ‘9v1d NY31008 ‘OV1d JWVN
C(DVTANIVHI) ANOLXIN IUNAII0HJ

£39NN071 40 aN3
CLNOTLNIHHND ‘(NIVHD)LIVM
N1939
4873 JLVAISSYVd NIHL INON==NIVHD 41
NIVHD (aV3H)J43¥
ENIVHD V NO JLYLS ONILIVM OLNI SS300Md 3JHL SInd IUNAIOOMd STHLI
£(NIVHD)IONNOT INNAIDONd

f3INAIHOS 40 anil
fYOIMd IWILSAY LV SNYYL JLYATLOVIY 3S713
fNO MILVT HO4 AITINAIHIS SISSIOONd 40 AVIHV LI LYISNI‘LON dTi
OML H314V SNVYL 3LVAILOVIY NIHL INILSAVIIWILATI OML 41
$3INO LVHL M3ILJV SIHL IMISNI ‘IWIL IWVS JHL LV ¥NDD20 OL SI SS3ID0¥d 3IWOS 4ITi
INIVHD IN3IA3 3HL NI 0D G7INOHS SSID0Hd SIHL FYIHM ONNOJ IAVHI
tan3
CAILXININO-:3INO ‘3INO-:0ML
NID38
¢NO AHHYD ‘SS3T ST INO SIHL 40 ALIWOINd WO SIHL 340439 ¥n220 OL AITNAIIHS IHY SINIAI 414

00260
065160
00160
06050
00060
05610
00610
04RK0
008K0
0SLin0
00Lk0
05940
00940
055h0
005K0
0Swho
00hH0
05%h0
00f w0
062w0
00280
0G1h0O
00t ho
0600
noowo
0GhE0
006E0
063£0
00850
0S50
00.£0
059f£0
nngfao

23
3

69

a9

13
19

93

99

0a (3STv4 3ST3 (

ALIYOIN¥d"SNVYL=>XLIHOIYd INO GNV IFWILSGV=IWILAT 3INO) YO 3IWILSAVI>INILIAI INO NIHL INON=/=3INOQ JI) FTIHM 066£0
£1ST7 LN3IAZ FHL ISVHD OL SYILNIOd 2§ ‘INIYYND-:OML *AILXIN LNIYHND-:3NO 00650

INOTLVATLOV IX3IN 40 3IWIL 3HLi ‘INIWIDYTISIA+INIL=:INILSEY 0ShSD

YIWTLSEY VAN fOML'INO (TOHINOD)J3Y 00nE0

N1938 05£€0

fINIWIOVT4SIA TVIY ‘SNVHL (TOWINOD)J3H 00££0

S(INIRIDVIISTIA * IWIL INIFYYND =) NOIIVAILOV IX3N 052€0

30 IWIL IHL GNV XLINOIYd SLI NO ONIGNIJ3IA'NIVHD IN3IAI IHL NI 002£0

30V1d 1234402 IHL OLNI SNYYL $S3I008d IHL SI¥ISNI I¥NA3IHONd SIHLI 0510

f{INIW3DVT4SIA‘SNYHL) ITNGIHIS FBNAID0NJ 001€0

050£0

NID38 00050

£°NOJIVIYD 3JO INIL=ALINOTHdi ‘XLINOT¥d TWI¥ 06620

CNOTLYINWIS JHI 40 JHOD IHL SWHO4 LVHML 00620

$3SS3008d IHL SINISIQ IVHL 33I¥L SS3I00Nd IHL 40 100¥ IHL SI SSVII SIHLI 06820

. f(XLTHOTH)T0INOD SSYTD SS3INONJ 00820
06120

fSLVISIHIL 40 aN3 0020

fYVE4[L LVISHOTHM)LSTHINTL=:(1 ‘LYLSHOTHM] ISTHIWIL 06970

Luzil LL61-1D50-91
0G:tl LL61-120-91 f uotrsaap

Ga

LL

£3

[1ez'2s) WIS 2aoung
¥INKIS 01-wa1shks33

146

[BEEL]
‘ONIC023a NOTLONHLSNI OL HOI¥d ONIINAIFHIS FHL SI00 FJWNAIDIONd STHLI
£300230344 3¥NAIDONA

{dOWIN NVIT008 ‘ONINASII0 (ANY¥IA0)I3Y *ONAS'T ¥IDIINT
NID38
$SS3I004d NOILONWISNI 3FHLI
*30IS3I¥ TTIM NOILONYLSNI IHL IYIHM ¥3J44nd NOILONHISNI 3IHL NI NOILISOdi *SOd4NG HIDIINT
L(SOdANA)NOTLONHLISNT SSVID TONINODNGD

£104INOIND 40 GN3
CHINNT
CIWTL=INIDLSYT S(NIDLSVTI-IWIL NIDI)SIVISIHIL
{-53SSII0HS ANYHIJO ANV NOTLONHISNI ¥O4 SOTLISIIVIS NOTLVHINID-NIINII

10753343 40 IN3
faN3
fINON-:YILTYMLSS *(0‘YILIVMLISS)IINATHOS
N1934
NIHL [YILNTOd)WHYJ=LSSLSVT GNV 3INON=/=YILTYMLSS ANV O=[[HILNIOd)JWHVA]IAVISLSS 4I
£°107S SIHL vy OL DNILIVM SNOILONHISNI M3IN XNV 3343°107S SIHL NO ONILIVM 34V S3IAVIS I4OW ON 411
SL-[[YILNIOdIWYVA]IAVISLSS=:[[HILNTOdIWHVA]IAVISLSS
NID3g
£1071S 3343 XATIVINNIYId IHL LON ST LI 41 AINO LOTS 3HL 33434 OL a33Ni
N3IHL d3ANT=\[HILNIOJIWYVd 41
‘YIINTOd HIADIINI
{NOTLONYISNI HILVT v A€ d3Sn 36 Ol 37GVI SALVIS WILSAS FHL NI LOTS V S33¥4 3¥na3D0¥d SIHLI
f(MIINTO4) 10T1SIINA IWNAII0Nd

£3SV3T13y 40 aN3
‘aN3
fONS SNVHL-:SNVNL f(0‘SNVY¥1)IINAIHOS
NID38
£$3SS3004d ONISYITIH "NIVHO IHL ISYIAVHLI
00 3INON=/=SNVYL 3TIHM
fISHTA NIVHI- SSNVHL
foy1d FHL 13Si f3InYL=:ovd
1 ¥IDILINT SNYHL (TOMINOINdD)43Y
NID3g
ENIVHD (AV3IH)JIY 'OYTd N¥3I008 ‘9VT1d IWVN
£Oy¥71d4 SL3S GNV NIVHD NO a3an3nd S3ISSID0Hd S$ISVITIY IYNa3IO0Nd SIHLI
£(OVT14 NIVHI) ISYITIY J¥NAID0Nd

fSYOLdI¥ISIA NOTLONYISNI 3FHL SATOHI ‘[2L:LINYVd AVHHY ¥IDIINT
£535S3008d JIUWIN ANV NOTILONYISNI HLOG LNOHAS TTIM “3IHL IHL 40 13IAIT LX3IN 3IHLI
N1D34
f1OMINOONdD SSVTD TOHINOD

1041802 40 aN3I
CNOTLVINWIS IHL JLYNIWMIL'INOG IYV SISSI00Hd 11V 41§ *NIVW JLVAILIOV NIHL 0=INNOJDOHd J1
fINNDD SS3IDOMd IATLOV IFHL NMOGE ‘1-INNODDOMA=:INNOIDOMd
fSNOTLONNS SSID0Nd FHL WHOANIdi ‘HINNT

Lhiil LL6L-1D00-91 [L1£2°2fl)
VINKIS 0L-wa1s£s)3q

A | 3ovd 0G:11 LL6L-120-91 £ uotrsuap

00920
06L1L0
00L)0
ns9LO
0090
0650
00610
0shL0
0080
0G5 1o
00f L0
062)0
00210
nG110
00t 10
nsnin
0000
05690
nnh9n
nsRan
00890
06L90
00,90
06990
00990
06590
00690
05h90
00K90
06590
00£90
06290
00290
06190
00190
06090
00090
046650
00660
06860
00860
06150
00L%0
06960
00960
06650
00650
06hG0
00KS0
0G£60
00f G0
06260

G198

i3

f13
w3

LI%)

fia

Ls

LI

LE]

WIS 2aounl

147

CTANIT

3JHL 40 ONINNIDIE FHL LY SYTILOVHYHD AWWNG 2 LSVd JINSE ‘HVHONI ‘HYHON

00 h'€'2'1=:1 404
I ‘3DVWINI
NID3R
00 LNINT LDIASNI
'SHOLJTHISIA NOTLONHLSNI 3HL QYIH MONi
NID3g
{NOILONYLSNT TVWHON V SI LI GNV a3HOVIY N33@ L3IX LON SVH WYHDOONd IHL 40 aN3 3IHL 4Tj
3673 330330344 NIHL DONIANT 4T

3S713 aN3
{(HIANODE) 3DNNOT NIHL IGOWANOD 41
£°31d0 N3IHL GNV NIVHO ANOJH JHL NI LIVMi
(LY LNI¥UND) I'INATHOS 300230 3Nd
‘430003 IHL NI 3IWILi
fSOILSILYLS NOILONHLSNI AWWNGE ‘I+WYILWNA=:WYILWNA
NID38
NIHL 23X3ON GNV 3FQOWANOD 3T
{ZHONVYE TYNOTLIANOD V ONIMOT104 G3INSST ATIVNOTLIANOD NOTLONYLSNI XWWNG V LT STi
1387V 4=: 1404V
fHOLIMS LYOHY 3IHL 440 SNYAL HONYYE FHL 40 NOISIOIA 3IHI YIL4V AIINVLIS ISNI LSHI4 IFHLi
NID3g
3S713 aN3
£°q31¥06V N3 SYH NOILONYISNI STHLi
fSNOTLONYLSNT DNIMOTT04 3INAIHISE $3A003a3ud
fSOTLISTLYLS LYOGYI *L+WHILAV=:wWyILaY
NID38
NIHL IWILAYV>KLIHOINA aONV L1¥OgVY J1
‘SWVIYLS HOLIMS Ol ONIOD SI LVHL HONVYHE ¥V ONIMOTI04 3¥V NOA 41 NOIHOI

f¥4344ng IHL WOHJ NOTLOVHLIXI NOTLONHISNIG (1 ‘LNIN¥ND)ITINGIHIS
£(HOJ4NGI)IONNOT NIHL WILNNODINA=\§0d4nd AT
{°g30023a 36 Ol NYNL HNOX TILNMN IIYM‘¥3A0 SI HOLId NOILONYISNI NIHMI
£°SIYLS NOILVNINID NOILONMLSNI IAOW400Ti ‘L+N3IDJO0T=:NIDJ00T 3IST3I AN3
£(3INON) IDNNOT
fXHOWIW WONH NYNLIY Ol LI ¥O4 LIVMI
S(SANYE‘Dd)AOW+1=:0d (0° (LNIHHUND ‘D4 IWIL) JTYWIW M3IN)ITNAIHIOS
SU(SANYE NI) 3NTVA HILNNOD WYYDOHd dWNE ANY HOLIJ XHOWIW J40 L¥VISi
S L+NIFOWHON= I NIDWYON
fSOTLSILVLS NOILVHINID NOTLONHLISNI TYWYONi
NID38
NIHL 300WJOON\ J1
ENOTLONYLSNI FHL HOLIJ OL 3IONIYIIIY XYOWIW V HLIM 330 LYVLIS ‘3IAONJ00T NI LON 4JTi

$3002303¥4 40 UN3
f(0'SNYHL)IINAIHOS NIHL INON=/=SNV¥L JI
fONS SNYYL-:SNY¥L 00 (HILNNODANG=\SOJdNG SNYYL 3ISTI 3ISTVJ NIHL INON==SNVYL 41)3TIHM
‘4NAT WOY¥3 NOILOVYIX3 ¥O4 NOILONWISNI ¥OSSIOONS ITINAIHISH
CLSHIA HOANAI-:SNVHI ‘(SH¥IIINA YILNNODING)AOW+L= 1 HILNNODANG
£*NOTLND3IX3 ¥O4 A3ITINGIHIS 38 OL ¥344ng IHL NI NOTLONHLISNI IX3IN LV SINIOd ¥3ILNNODANG
(0 (HILINRODANG IWIL)NOILONYLSNI M3IN)IINAIHOS NIHL DOYION3\ 3T
£*QIHOVIY N3I3IA LON SVH 30VHL IHL 4O ANI IHL 41 XINO HOLI4 NOTIONYISNI IX3IN 3TINGIHISH
SSNVHL (NOTLONMISNI)JIY

Lhitt LL6L~1D0-91

{3t ¢ 3ovd 06311 LL6L-1D0-91 £ uorsJap

LGET
05£01

nosol

06201

00701

05101

00Lot

05001

00001

06660
00660
05860
00860
06160
00L60
05960
on9hn
06660
00660
0SH60
00n60
06860
00560
06260
00260
nG160
00160
0G0knN
n00K0
0Gh80
006R0
ns98%0
00aR0
0G6LR0
0nLR0
06980
00980
0GSR0
00680
0GHR0
00hR0
0S80
00£R0
05280
n0780
06180
00180
0G0RN
00080
06610
00hL0
0G8Ln

229

1’9

073

029

(]

f13

219

n3

L8

a3

[ez'efL) WIS Z00KAL

VINHIS 0l-wda31shsn3n

148

YSTIVA= I ((ATSOUSIWEYI LSS NIHL dIANT=\[AISOUS JWEVd 41 0005 1
SL+[[SYWINSIWYVJ)IAVISLSS= [[SYWINSJWHYI)IAVISISS NIHL JIANI=\[SVWINS)WYV 41 06671
4 f38TIVA= [[ATSHNSIWEVAILSS NIHL dFANI=\[AISHNS JWYVA 4T 00621
i £°31MVIIVAVNN SY SAONVYIJO ISOHL NHVW ANV SLOTS FTAVIIVAY JHL GVHD MONI 0G6R21
00821
‘HOIT1D ATISOHS 40 aN3 06L21 673
SLHVLISTID-AWTI+3IWILID=IWILTD 00L21
faN3 06921 0f3
S(INON)IDNNOT ‘[AISONSIWYYI=:LSSLSYT ‘INIYUND-:YILIVMLSS 00921
N1D3g 06621 0fA
NIHL O<[[ATSONSIWNVA)IAVISISS 4T 00621
CLIATSONSIWHYAIHOLSS) IONNOT NIHL [[ATSOHSIWHVAE)LSS\ 41 05hZ1L
TIWTL=:LYVLISTO ‘L4HDTID=:HIITD 00hZ1
NID3g 0sF71 679
NIHL 0<LIATISOYSIWYYAIIAVISLISS HO [[AISOUSIWYYAILSS\ oI 00F21
£ 3WVS IHL X11IVXI 0a°3AIS ANVHIJ0 JOHNOS FHL WOMJ MOTINIAO GIOAY OLi 06221
THOTTD ATISHNS 40 aN3 00271 123
CLYVLISTO-IWIL+AWILTO= 1 INILTO oSzt
‘and 0o1z1 273
CCINON)IDNNOT ‘[ATSHNSIWYYA=:LSSISYT ‘INIYUND-:HILIVMLSS 05021
‘SSINONd STHL XYV 00021
NID3E 05611 979
NIHL OC[[ATSHNSIWHVA]IAVISISS 41 00611
‘LIVM LVHL N33S I3X LON 3AVH SINIAN3J3IA SLI Ln8 3344 ST 10O71S 3IHL JTi 0GR L
SCLOATISHNS IWHYAIHOLSS) IDONNOT NIHL [[ATSHNSIWYYI]ILSS\ 41 00811
‘LIVM'33IN4 13X LON ST 101S 3HL J1i 0sL11L
fSOTLSILVLS HOITOI ‘IWIL=:LHVISTO ‘L+HOI1D=:HOITD 0011
NID38 06911 129
£03344 ST 191S SIHL 1111 JOLS "d3¥¥NII0 SYH MOTIHIAOG 00911
NIHL D<[IAISINSIWYYI]IIAVISLSS HO [[ATISHNSIWYVA)ISS\ 41 04611
£°LI 404 ONILIVM T11LS S3IAVIS INIANIA3Id JWOS SYH L10OTS SIHL AT 00611
£°30IS ANVHYIHO NNIS IHL NO MOT4¥3IAO LSS GTIOAY OL HOIITD Vi 0Gh1LL
fan3 0ohLL 923
CYYHONT ‘ININT=:[T]WHVd 0sf 1L
NID34 00f 11 q7q
00 8°L9°G=:1 ¥04 06211
fIOVHINT 00211
‘SYILIWYNV KONIANIAIA viIva a3iN L1 S304ai oSttt
NID3G o0ttt <79
N3HL (OAS=[3000d0JHYYd HO HONVHE=[IJALIWYVd 4O ANIOVYI=[IJXLIHYVd)LON 4TI 0501
f@IONIYIIIY HINVE FHLY ‘(SHNVE‘8//[AAVWIWIHEYI)TJOW*+1=:[AAYWIW]WHY 3513 00011
(SYNVE‘8//(AAVHAINYY4)AOW+1=:[AAYNE JHYYd NIHL HONVYE=[IdALIWHVd JI1 05601
'SUIAWNAN XNYE OLNT SISSIHAAY AHOWIW MVN LHIANODI 006KNI
‘aN3 05801 w23
CYYHONL ‘ININI=:[I)WHVd 00801
NID3g 06201 CEL)
fSHILIWYNYD ¥IHLOH 00L0l
0a 2L11'oL'6=:1 yod 05901
‘an3 00901 £73
CYYHONT ‘ININI=:[TIWHVd 05501
NTD38 00601 fza
{SYILAWVYVA 3DVSN IDWNOSIY 3IHLI 0ShoL
Lhill LL6L-120-91L ([1f2'2FL) WIS 2a0411
h=L 39Vd 0G:11 LL61-100-91 £ uorsuap VINWIS 01-wa1sks)3n

149

£*300W TYNOILIANOD NI SNOIL® NI 3INSST‘13S N3IG LON SYH 300D NOTLIANOD 3FHL AT
f3WIL ONTA0D3ai 3000303¥d ‘0L ININHND) TINTIHDS
NIN38
£3000 NOILIGONOD JHL NO LNJIANI4FG SI LT 414
14 aN3
fSY3IM0T104 IINGINOSE 300030384
fDTLIWHLINY NCISIDIA HONVHE ANV ONTA0D30 HOd IWILE ‘(2°LNIHHND)ITINTIHIEC
N1D38
NIHL 12e=<[390240IWYY¥d 31
fZNOTLONYLSNI HONYMA ONIXIANT NV LT ST
£ANYL = :3GONA00T NIHL IZISd00T1=>[LSIAYAIWHYd ANV L=(48INVIIWEYA ANV 3JAOW0O0T\ ANV HO¥YNA J1
£2300W 4007 L3S OL ONIOH HONYHA SIHL SIi
f(HOQNO2E) IONNOTT NIHL JAOWANOD 41
£300W TYNOTLIANOD NI SI WALSAS IHL 41 LIVMI
NIN3g
NIH) HONVNA=[FdRLIWYYA 41
fHONYHA TYNOTLIANOD ¥V ST LI 414

3$173 aN3
S(LCLNINHND) IINATHOS *300D303¥d
£°030023a 139 ANV SNOTLONYLSNI ONIMOT104 3TnaIHISI
£3STVI= 130004007 [AaVHAIWNYd=:0d
£3T0WA00T X4ITINN ONY ONIHOLAS WYIHLS ISNT HOLIMSI
CIWIL=ANILAY 3INHL=:1y¥0aY
{SNOTLINYLSNI ONIMOTI04 40 NOILYNIWHILXI SSYW ¥V 404 3IDVLIS IHL L3ISi
f(HOANO29)3ONNOT NIHL JAOWANOD 4T
NOTLONYLSNI SIHL 3NSSI LON 0a‘3IQOW TYNOILIANOD NI SI WILSAS 3IHL 4Ti
NI1n3Q
fHONVMA TYNOILIGNOINN NVi
NIHL ((SLY¥28=[300040)WHYd ¥O G1D9=[3d0I40)WHVd HO
HIva=>(FA0DdOJHHYd) ANY HINYEE={IdALINEVd) HO DAS={3G02d0)WYYd 31

fXONIANIJIA ¥ILSIDIY XIANI 40 aN3
f(HIYANT) LOISIINS
CCLIOIYANT IWHYAIHOLSS)IONNOT NIHL [[DIWANTJWHVA]ILSS\ d1
£XONIANIAIA YILSTIDIY XAINI 3IA10S3IN
NID3R
NIHL dIANT=\[DINANI JWHVd J1
£, XONIANIJIA YILSININ XIANT Ny 3¥3IHL STi
NID3A
3S713 aN3
£30023034d ‘3NYL=:D0HIANT
£ ISHT4 ¥344nd IHL HSN13 1ng SITLIATLOV JOLSH
NID3IG
NIHL ANIOVHI=[IdRLIWYVd 3IT
£203HOVIN N339 JOVYL IHL 40 ANT 3IHL SVHI

fLNdNT 340 aN3

L+ (DIYANT IWHYA)IAYVTISLSS= [[DIVANIJWHYA)IAVISLSS NIHL dIANI=\[OFHANIJWHYH AT
£°1S5 IHL NI 107S MILSYW ¥ILSINDIY XIANT 3HL Y04 FAVIS FHOMW mze_
*aNjy

L+ [SYWOHSIWIVA]IAVTISLSS=: [[SVWOUSIHNYA)IAVISISS NIHL JIANI=\[SYHOUSIWNVL 4T

Lhitt LLAL-1D0~91

S-1 39vd 06:1L LLAL-120-91

00961
nG6661
0ns61L
nGhs1L
noKRGI
06561
00861
06261
007261
06161
00161
06061
00061
a56nt
0nhnl
nGant
nnant
LIFAT
00lht
05941
nnant
066h1
00Gh1
0Ghh L
LGETR
0sEnL
onfni
067n1
002n1
0G1ihlL
nninl
050h 1
000n 1
0G6hs 1L
006E 1L
0s8f 1t
008f 1
0SLEL
00Lf1L
0695 1
009f 1
06651
006f L
06ns 1
00ht L
058 f L
nnfeL
nG2eL
00251
0GLEL
00Lf1L
nGof L

99

Gf9a

(]

neq

££3

£f9

2t
1£3

159

223

573

WIS 204l

¥VINWIS 01-marshs)in

150

NIHL LVOT4>(3000d0)HYYd 41
ENOTLONHLSNT INTOd Q3XTdi

£ (HOGNO29) IONNOT NIHL FAOWANOD 41
300K TYNOLLIANOD NI G3INSST N3FG 41 L[VMi
faN3

‘{0 DONIN4SI40)ITNAIHIS

CCLN3YYND ‘IWIL)ANVHILO MIN-:ONISASI40 INYL=:dOWIW

£ XYOWIW WOHS ANVYIHO FHL HOLIS OL SSIJOHd ANVHIJO NY ITNATHICH
NID3A
NIHL ((HOL3I4=[3000d0)WYYd HO ¥ISLII=[3IA0IOIWHYd) ANV IS=[IdALIWHVA) WO
((1=\[3IHOLSIWUYVd ONV X¥=(IJALIWYVd) ANV dIANI=\[ATSOHS)WHVL) 41
fLXHOWIW WOMJ ANVHIAO NY a33N LI s30ai
‘an3

‘N3

fOVLIXAN=:OVIIATLOV *3STV4=:3000aN0OD
NID3q
NIHL IAOWANODIN\ 4T

1113S 3002-NOILIANOD aITVA 3HL SVH MON NOTLONYLSNI SIHL ‘3AOW TYNOILIGNOD NI ION 413
f(0LwnZ ' OVLIXIN)AOW+(=:(DYLID JHYYA= TOVLLXIN

NID39

NIHL 0<[DVLIIDIWYYd 41

43000 NOILIGNOD 3FHL 13§ LI NYOI

fIWIL ONTIA0O3Ai ‘(1L LNIH¥ND)ITNATIHOS *3407303¥d

NID38
SSNOTLONYLSNI ONTHONVHE-NON ¥OJi

3S73 aN3

faN3
£440 HOLIMS 3AOW400T IHL NMNLi *3STVI=:3A0W00T
L(SNVE8//[LSIAYAIWYYI+[AaVYEIWYVA)AOW+1 3ST3 [AAVHEIWYYd NIHL IJTOWHOOT\ dT1=:0d

¥d IS1ayd JHL ANV aqavyd 3IHL WO¥Jd SSIWAAY WYIYLS MIN IHL ILVINDTVO NO SI 3JAOWd00T 411
t3ngI 40 L1S3I¥ IHL L¥OAYI ‘IWIL=:INILAY ‘3INYL=:lyoay
NID38
NIHLI (0=[¥83INVLIWYVA ONY 30OWJ00T) HO (L=[Ya3NVIIWYV¥d ANY JAOWJOOT\) 41
fL03IHOLIMS 38 OL WVIHLS NOILONYLSNI IHL SVHI
fSNOTLONYLISNI INIANIJIA-3A0I-NOILIANOD 40 aN3
tand
fIN3
{OVIIXIN=IOVLIIAILOV {3STV4=:30000NOD
NID3g
NIHL DVLILX3IN=\DVIIAILOV 41
f3AOW TVNOILIANOD ONIHNA dIONYHO
(SNOILONYLSNI DONILLIS 300D NOILIGNOD DNIA¥YVH3IY) SNLYLS WILSAS 3ILvadni
{351V 4= :03IXION= :IAOHANOD
£13S 39 0L 3002 NOILIGNOD ¥O4 LIVMI ‘(HOANOJH)3IDONNOT
£(3NYL 3S73 ISV NIHL (IAOWOOT\ ANV 0=[¥AINVLIIWAVJ)
Y0 (IAOWJ00T ANV L=[HAINVIIWYVL) 41)=:D3XION
fSNOILONYISNI AWWNG 3NSSI‘A3IHOLIMS 36 Ol ONIOD ST WVIYLS ISNI 3HL 31
fONINSST 40 3JAOW TYNOILIANOD L3S *3nyl=:3AOWANOD
NID3d
NIHL 3T0DANODN\ 41

JA NN

9-1 3nvd 05:tt LL61-120-91

- o oo -

s i] Sl s it i ol i N R Ut i s i L e

LLEL=-120-91

£ uorsaap

[wee‘esl)

05191
notLalL
nsoR1
nnngL
a5k Lt
00k L CLE
0681
ULLEYAY
a6t
0nlLlLi whq
06911
GLYA
0661
0061 263
0ShLL 3
nohLL
0GELL (L]
0ot LL
‘ovlL N
nselLL
0021
0GLLL Zn9
00LL1
0s0n /L1
0noLL
ngKal (]
00691
06891
0089l G653
06191 LLE}
nonlal
nG9al
SCNIALINYN
00991
05691
00691 ong
0Gh9t
00491
06891 1£3
0ofalL /3
06791 3%}
00291
05191 (%]
00191
51091
05091
00091
06661
006AG1L
06861
00961
0G/61
00161 i)
06961

WIS 2a0unl

VINWIS 01-w215489737

—— — > - T v o
-
[Ta
—~
$(0'ONINdSA40) ITINATIHOS NIHL INON=/=ONT¥4SI40 41 06L02
3S73 (INON)IDNNOT NIHL 2>IONAS 41 00.02
fULSHTA ININ
1 109 LVHL SS300¥d GNV¥IHO FHL 3ISYITI¥ 3IST3 LIVM'GIDYIW LI LON 3IAVH SHIVd 2 IHL 411 0902
fL*ONAS=IONAS 00962
£SSII0Nd ANYHIHO FHL HLIM JZINOMHONASI 05502
0nSn2
faN3 05702 163
(ITYANTIXI ' HONIXI) KNOLXIN NIHL MOTVLIVA=HOHYXIS 41 00h0Z
£0D 4300030 FHL L37°IUNLOILTIHO¥Y MOT4-VIVaA 411 06507
L(SYWYNS
)L07S334d NIHL ((¥LISIS=[3IA0IdOIWHVd ANV IS=[3IJALIWYVd) HO 1SX4=[3C0IdO)WHVJ)\ 41 © 0o0f02
£°473SLT MON @33¥4 39 NVD L101S MNIS 3HL NOTLONYISNI IHOLS V LON ST LI 414 06202
N1D34 00202 168
38173 an3 06102 843
SCLLATISANSIHYYAILSS [[ATSHNSIHYVAIHOLSS)ISYI TN NIHL dWOX4=(3000d40)WYYd 4d1 00102
£ XTILVIGIWWI 3TEVIIVAY SI ONVY3IJO JHL'NOTLONYLSNI 3IHVIWOOD ¥V ST LI 411 05002
‘an3 00002 053
£(L*LN3Y¥ND)ITINAIHIS NIHL MOTJVLIVA=\HOYVYXIJ 4II 06661
£°37VTIVAY ST LI 4314V GNVY3IJO JHL YIJSNVYL‘IYNLIILIHOYY MOTI-YLVA-NON HOJ§ 00661
C(SYWINS)LOTSIFYS ([[SYWINSIWYVJIHILSS)IONNOT 06861
£379VIIVAY 3N0D3G OL GNV¥3dO ¥OJd LIVMI 00861
£(IIYANTIXI HONIXI)ANDLXIN NIHL MOTIVIVA=HOYYXIJI 41 0SL61L
f¥33033a 3ISYITIY ‘IYNLOILIHIYY MOTA-VIVa YOd4i 00.61
NID36 05961 0sq
£379VIIVAY LON ST GNV¥3IdO NNIS 3IHL 4Ti 00961
3$13 aN3 06561 6r3
$(3YINIXI HONIXI)ANOLIX3IN NIHL MOIIYLIYO=HOYYXII 41 00661
14300030 3ISV3ITIY ‘IYNLOILIHIYY MOTI-VIVA JT@ 0Gh61
fIWIL ONIGYYMYOS ONVY3IOI ‘(1 ‘IN3I¥Y¥ND)3ITINGIHIS 0onAktL
£°1017S JINIS FHL 334 (SVHWINS)L0T1SIIHS 0GEAL
NID38 00£61 (L]
NIHL [[SYWANSIWYVA]LSS JI 05261
£43TAVITVAY GNVHIHO NNIS IHL STi 00761
NID39 06161 49
N3IHL (IS=[3dALIWYVd YO (A1X3=>[3IQ0DdOIWYYd ANV IS>[IJALIWYVJ) HO 00161
1SX34=[3002d0IWYYd ¥O VIXd=[3IA0DdOINYVd YO JIANI={ATSHNS IWHEVJ)LON 4T 05061
£47113M SY ONVHIHO MNIS ¥V 433N LI S300i 00061
fan3 05681 L3
f(SYWOY¥S)101SIIUI {1=:0NXS 00681
£ 43N0 ST NOILYZINOHHOINAS 3IHL JTYH'NOTLINYLISNI GNVHIJO-l ¥V SI SIHL 41 06881
NID3E 00881 Lng
NIHL dOWIW\ 41 05181
3$173 an3 00.81 9n3
‘(0‘ONI¥ASI30)ITINAIHIS *(INIYYND‘IWIL)GNYYIHO MIN-:ONIHJSII0 05981
{*ANVH3IdO ¥ILSINIW IFHL HOLI4 Ol SSIO0¥d ANVHILO NV IINAIHISIH 00981
NID38 06S81 CLL]
NIHL ((L=[3YOLSINYVd ONV XY=[3IJALIWHYd) HO YY=[3IJALIWHVd) ANV JIANI=\[ATISOUS]IWYYd 41 00581
‘¢ANVH3dO 308NOS ¥ILSIDIY V a33IN LI S3041 0GhRL
fONTIQ0J3a INIOd Q3IXIdi ‘(1 ‘INIYYND)ITINAIHIOS 00nRL
£3STV4=:334401Ixd 3S13 (HONIXA)IDNNOT NIHL 3IFYINIXS LON d1 0GERL
S LIVM 3873 LI avyn‘3343 SI ¥30023a INIOd 43IXId 3IHL 411 00f81L
fLINND INIOd G3XTd Ol ¥3IJSNVHLIE ‘(L °LINIYYND)ITNAIHIS 06281
NID3E 00291 Sha
Luitl LL6t-120-91 ([1€2°2¢L) WIS 210Wq1
L=t 39vd 06l LL61-120-91 £ uotrsuap VINWIS 0t~waishsy3yn

i M i o £ e e £

152

f(0‘ONINASII0)ITNATHIS {(INIUYND ‘IWIL)ANVYIJO MIN-:ONI¥ASI40 06§€2
{TQNVY3d0 ¥ILSINAY IHL L3O OL SSID0Hd ANVHIJO NV 440 AN3Si 00§z
i NID39 062£2 169
NIHL ((1=[IYOLSIWHYd ANV XU=[IdALIWHYVA) HO Y¥=[IJALIWNVA)ANY dIANI=\[ATSOYS]IHHVL 4T 002€£2
fANVYIJ0 30¥NOS ¥3ILSIDAY V a3IAN LI s30di 0sLf2
‘ONIGN)30 INIOd ONILVOTIE *(1L‘LININYND)ITINAIHIS 001€2
£3$TV4=2:334301T74 3S13 (HONIT4)IONNOT NIHL IIWANITS LON I 050€2
£43944 4300230 INIOd ONILYO1d IHL STi 000£2
fLINR INIOd DNILVOT4 OL MISSNVMLI *(1L‘LNINHND)IINAIHOS 05h22
N1D348 006722 ['14:]
fSNOTLONULSNI LINTOd ONILVO1di 06822
00NRZ2
3573 an3 06L72 Gh3
SLINN LNIOd a3X14 40 aNn3i 00.22
CCLIATISANS IHYYA LSS [LAISYNS IHYYJIHILSS) ISYITIY 06922
'3T9VIIVAV ST MNIS IHL MONI 00922
‘aN3 06622 w63
‘aN3 00622 G663
f(INON)IONNOT (0‘ (INIYUND‘[AAYWINIWHYL ‘IWIL) JFYWIW MIN) ITNATHIS 05h22
NID34 00422 668
NIHL ¥1S134=[3000d40)HYYd QNV IS=[3I4XL)IWHVd J] 0s€22
fAMOW3IW OLNI G3¥0LS 39 OL SI 1InS34 Vv 41i 00£22
£(IJYANIXAHONIXA)ANOLXIN NIHL TVINIS=HOWYXIJ 31 06222
{MON ¥300030 3HL 3SV3ITIY ‘WILSAS TVIYIS V ¥OJI§ 00222
£(33Y4n3IXI‘HONIXI) ANDLXIN 0512z
fLINN NOILND3X3 3HL 3ISVIINI 00122
" ({{300040)WYVd]03X3 INI¥YND) I TINAIHOS 06022
ENOTLONHLSNT 3IHL 3LND3X3i 00022
£(3IYANIXAHONIXA)ANOLXIN NIHL INITIJI=HOHVYXII 41 05612
1¥30023@ IHL 3ISYITIIY'WILSAS QININIII4 403§ 00612
£35TV4=:3344n3X4 3S13 (HONIXI)IONNOT NIHL 3I¥INIXI ION 4T 0seL2
£*LIVM'3ITEVIIVAY LON SI LINN NOILNO3IX3 3IHL 411 00812
NID38 0sli2 (14:]
SLINN NOILNJ3IX3 3IHL SAIIN LI JIi 00LL?
3s73 ani 06912 £63
S(INON)IONNOT ‘(0 (LNIYUND‘[AQVWIWINEYD ‘INIL) J3YWIN MIN)IINAIHOS 00912
f(SYWINS) 10153344 06612
C(LISYWINSIWHYAIHOLSS)IONNOT NIHL [[SYRINSIWYVAILSS\ 4T 00512
£°340LS FHL 00 OL 4FUWIW ¥ 40 GNIS'LIVM AON3IANIJIA-VIVQ 379ISSOd V ¥ILIVi oshL2
£(IIYANTIXA HONIXI) ANDLXIN NIHL MOTAVLIYA=\HOWYXIJ 4I 0onL2
£4300030 IHL 3ISVITIY 'WILSKS MOTI-YLIVA-NON 411 0sE12
NID3Y 00f12 £6q
‘gas IHL OL IN3S N33G SVH LI‘AYOWIW OLNI 3IHOLS V SI LT JIi 0s21e
NIHL (¥1SIS=(300DJOIWYYd ANV IS=[3IJALIWHVd) HO LSXJ=[3C0Id0)WYY¥d 41 00212
3S73 an3 osti2 263
£(334INIXAHONIXA) ANDLXIN NIHL MOTAVLIVA=\HOWVXIJ 41 0oLtz
‘4300030 3SY3I13Y 'SWILSAS MOT4-VIVA-NON HO4i 05012
NID38 00012 269
‘INOG N33 KQVIYTIV SVH LI‘YILSIOIN V OLNI AVO1 ITdWIS ¥V SI LI dTi 06602
NIHL (VIX4=[3G0DdOIWYVd ¥O @1X4=(3A0DdOIRUVA) ANV IS>[IdALIWNYJ 31 00602
f(1°INIYYNI)IINAIHIS NIHL JOWIW GNV MOTAVIVA=\HOHV¥XIJ J1 06R02
fIWIL ONIAYYMYOS ‘WILSAS MOTJ-VLIVA-NON V NI G3a033IN SI ONVHIJO AMOWIW V 4Ti 00802
Lhtil LL61-100-91 [LE2‘2fL) WIS 2a0oWal

8-1 30vd 06:t L161-120-91 £ uotsaap VINWIS 01-wa1shs)3q

i e e i i e e A g —

153

£(3IYINTITIHONITI) ANDOLXIN NIHL MOTIVIVA=\HOWVT4 JI
£430003a IHL 3ISYITIY‘WILSKXS MOTI-VLIVA-NON 414

N1D38

‘gas 3IHL OL 430 IN3IS N3I3g SYH L1°XYOWIW OLNI 3IHOLS V SI LI 411

NIHL 1ST4={3000d0IWHYd 41

3813 aN3
L(IIYINTTA HONTTA)ANDLXIN NIHL MOTIVIVA=\HO¥VId JI
£4300230 3SV3ITIY ‘'SWILSXS MOTI-VIVA~NON ¥Odi

N1938

£3INOG N338 SVH LTI‘H3LSINIY ¥V OLNI QY01 SI XII d1i

N3HL 7174=[3902d0]WYYd 4T

£(1*LNIYYND)ATNAIHOS NIHL JOWIW ANV MOTIVLYA=\HOHVTId JI

‘IWIL ONIQYYMYOI ‘WILSAS MOT4-VLIVA-NON V NI 43033N SI ANVYIJO AYOWIW V JIIi

{(0‘ONIYdSS40) ITNAIHIS NIHL INON=/=DNT¥JS440 41

3573 (3NON)IONNOT NIHL 2>INXS 41

£*LTYM‘Q3DY3W L3X LON 3AVH SHLVd 2 3IHL JTi

fL+ONXS=:ONXS

£$S3004d ANVHILO FIHL HLIM IZINOYHONASI

faN3
£(334INITIHONINS) ANOLXAN NIHL MOTIVIVA=HOUVTS 41
{(SYWINS)1071S33¥4 NIHL 1ST4=\[300040)WHVd 41
N1938
3573 aN3
C(LIATSHANSIWYYAILSS [[ATSHNSINYVAIHOLSS)ISYITIY NIHL dWOTd=[3A0Id0OJWEYY 4T
{*MON 318VIIVAY ST ONVHIO 3HL ‘NOILONMLISNI 3UVAWOOD V ST LI JIi
tan3
(L LNINHND)ITNAIHOS NIHL MOTIYIVA=\HOHYT4 4II
fONVH3JO IHL WIASNVHL'IYNLIILIHOYY MOTA-VLIVA-NON ¥O4i
{(SVWINS)L01S33¥d ‘([[SYWINSIWUYJIHILSS)IDNNOT
{3T19VTIVAY IW0238 Ol GNVHIJO HOJ LIVMI
£(3344nI14 HONITA) ANDLXIN NIHL MOTJVLIYA=HOYVTS JIT
£430003a 3ISYITIY ‘JUNLOILIHIYY MOT-VIVA ¥O4i
N1938
£379VIIVAY 1ON SI QNV¥340 MNIS 3HL 41}
3s13 an3
£(3IYINITA HONITA) ANOLXIN NIHL MOTIVIVA=HONVIS JI
£4300030 ISYITIY ‘IUNLOTLIHIYY MOT-VIva 414
fIWIL ONIGYVMHOS ANVHILOE (L °INIYYND)3ITINAIHIS
£°1SS IHL NI 107S ANIS 3IHL 334Ji (SVWINS)10T1S3IT¥S
NID3E
NIHL [[SYWINSIWYVA)ISS J1
£3TAVIIVAY ANYYIJO MNIS IHL SIi
NID3§ NIHL (1S14=[3001d0)WYVd
¥0 a774=[3000d0IWYYd ¥O G14ST13=[3000J0IWHYd YO JIANI=[ATSANS]WEVI)LON J1
£4773M SV ANV¥IJO MNIS V g33N LI S30ai
‘aNn3
£(SYWOYS) 10753 ‘L=1DNKS
£*Y3IA0 ST NOILVZINOMHONXS IHL JTVH'NOILONYLISNI aNVHIJO-L V ST LT JTi
NID38
NIHL dOWIW\ 3T
3$73 an3

06662
00652
05852
00RG2
06lG2
00152
06962
009%2
06652
00662
05hs2
00hG2
06£52
00£52
06252
00252
06162
n0LGZ
06052
00062
05682
006n2
0G8n2Z
00842
06Ln2Z
00Ln2Z
059K2
00942
055h2
006h2
0Shh2
00hK2
05En2
00En?
062n2
002hn2
0Stn2
00LK2
05082
00082
066¢€2
006£2
0SRES
00RE2Z
0SLE2
00lLg2
069¢2
009¢2
065€2
00$E2
0ShEZ
00KE2

LL L]

f£a3

£99

299
663

193

199

093

099

fen

Q63

869

163

Lhtil LL6L~1D0-91 [1E2'2¢l) WIS 20Kl
6-t 39vd 06:LL LL61-120-91 € uotsuaap VINKIS 01-w2a31sksn3a

154

£S3SS3008d NOTLONYISNIT 17V HOJ SOTLSTLIVLIS NOTLYNIWHILI

£SNOTLONYLSNI-a3LY08V-10N 30 aN3
{DOYJANI LON 30 aN3
fANIOVHL LON 4O aN3
CIWTL=WYILISYT ‘(WHILLSYI-IWIL WYILN)SLYLISIWIL
fSNOTLINHLSNT TYWHON ¥0J SOTLSILIVIS NOTLYNTWHIL-HILNT

f{SNOILONHLSNI ONIHONVYE-NON 40 aN3
£(3002aN0J ‘HOANOIE)ISVITIY NIHL OVIFAILOV=[OVLIDDIWYYd 41
$17 404 ONILIVM SNOTLONYLSNI 11V 3SVI13IY ANY 300D NOILIANOD IHL LIS MONI
fLINN LNIOd DNILYVOT4d 340 aN3
CCLOATISHNS IWNYYATLSS ([[ATSANS JWHYIIHOLSS)IASYITIY
379V 1IVAY ST MNIS JHL MONI

‘N3
£(3FYANTIA HONTTA) ANOLXAN NIHL TVIHIAS=HONVIS 41
fMON ¥3d0230 IHL 3ISVITIN'WILSAS TVIY3S v ¥O4i
£((2 3573 L NIHL dWDT3=(3002d0TWHYd 41) “INIVYND)IINAIHOS
£:00 SAAV ITIHM 3TORD “TASNYHL 1InS3IY vV a33IN LON 00 S3IHVIWODI
£(3343aV14 HOQVT4) ANOLXAN
LLINN NOTIND3XA 3IHL ISVITINI
£(1 ' LN3YNND) IINATHIS
f3INIT3I4TI4 Qv 40 3IDVIS LSL NI 370K Li
£(3FYANTTIHONITA)ANOLXIN NIHL INTTIdIJ=HOYVTS 4T
£¥30053a IHL ISV¥ITIY'WALSAS AINITIdI4 HO4I
€357V 3=:33440Y14 um;u (HOGY¥T14)3DNNOT NIHL 3I¥JAVId LON 41
$3TEVIIVAY LINN NOTINDIXI aav 3IHL ST

NID3g

¢LINN NOTLIND3X3 @AV 3IHL SAI3IN LI 4Tt

3$73 aN3

fSITI4ILTINK INIOd ONILVO1d d0 aN3i
$(3384n114 HONT 1) XNOLXIN NIHL TYIHIS=! H¥1d d1
{MON 4300030 IHL 3ISV3ITIY‘WILSKS TVIWIS v ¥O4i
$(IFYIAWTA I WTI) XNOLXIN
fLINA NOTLNJIX3 FHL 3ISYITIRI
£([[3002d0INYV¥d]03X3 ‘ LNIHUND) ITNATHIS
ENOTIONYLISNI FIHL 31nJ3X3i
L(ITYANTTI“HONITH) ANOLXIN NIHL INITIJIJ=HO¥VIL 41
‘4300030 IHL ISY3IT1IY'WILSAS GANITIdId HOJi
£387V3= uuuuazqu 3S73 (HOAWT13)3DONNOT NIHL 3JIHIAWTS LON JI
(ITAVTIVAY LINR NOTIN23X3 X TJILTAR 3HL ST

NID3E

{SACTAIQ ANV SITTAILINW INIOd ONILVOTdi

NIHL TNRT4=<[IT0IJOINYYd 41

3S73 aN3
(INON)IONNOT (0’ (LNIHUND‘ (GAYWINIWEVC ‘INIL) JIYWIN M3IN)ITINGIHOS
£°18S IHL NI 1OTS JNIS 3HL 33¥J1 ‘(SVWINS)LOTSIIYI
C(LISYWINSIWYYAIHILSS) IDNNOT NIHL [[SYWINSIWHVA]LSS\ JI
3J¥0LS IHL 00 OL JIYWIW ¥ 440 GNIS‘LIVM AONIANIJIQ~VLIVA ITISSOd V Y3L3vi

Luitl LLAL~1D0-91
ot-t 39vd 05ttt LL61-120-91 £ uotsJap

06582
00682
0Gh8e
00h82
06£82
00f£R2
nsgzge
00282
06192
noige
06082
00082
0s6L2
0o06Le
nGg8lLe
009L?
0sLL?
0oLLZ
0592
0nn9Le
0661L2
0062
oshlz
0onl?
ngEle
00€LZ
0s2L2
onzlz
0sLlz
notLlz
0$0.2
000L2
06692
00692
05892
00892
05192
00.92
06992
00992
06692
00692
05h92
00h92
05£92
00f£92
06292
00292
0S92
00192
06092
00092

WIS

6173
123
2£3

Lh3

963

903

994

Ga3

Goq

493

‘2qoWal
VINWIS 0l-w31sks)3q

et 2

155

35713 aN3 0511E 993
f{QNVY340 INIOd 43XI4 40 aNdi 00LLE
f(0'LNIYYI)ITINAIHIS 3ST3 (INON)IDNNOT NIHL Z>ONAS INI¥Yd 3I1 0501¢
f{+INAS " INIHVYd=ONAS " INIYVd 0001 E
{NOTLONYLSNT LN3YVd HLIM 3IZINOYHONASI - 0S60€
0060¢€
{ONYYIJO HILSIOIY g3XI4 40 aN3 0680€ 0L3
SCLIATSOYS)WYV ILSS [[ATSONSIWUVIIHILSS)ISYIT1IY 0080¢
fNOILVD0T ONVH3JO IHL 3ISVIT3NI 0GL0€
‘aNd 00L0€ 213
(1L INI¥YND)ITINATHOS *(SYWI¥S)LOTSIINA 0690¢
NID3g 0090¢ zla
! 3S73 aN3 05G0€ 13
£(1L*LNI¥YND) ITINATHIS NIHL MOTAVIVA=\HOYVXIJ JII 0060€
fX7IVOILYNOLNY INOD ST DNIQUYMHOL ‘WILSAS MOTJ-V1IVG 411 0SHOE
f(SYWOY¥S)LOTSIIYS ‘([[SYWOUSIHYVJIHILSS)IONNOT 00h0E
NID3d 0S£0¢ L8
£379V7IVAY LON SI LI 414 00£0€
NIHL [[SYWOUSIWHVJ]ISS\ 41 0520€
NID38 0020€ 0.8
‘ONVY3J0 ¥3IISIDIY INIOd G3XIJ) 0S10€
0010€
3573 QN3 0600¢ 693 3
{QNVYIJ0 XYOW3IW G3XI3 40 aNFI 0000§
f(LIATSOUSIWYYAILSS [[ATSOUSIWYVIIHOLSS)ASYITIY NIHL IS=\[IdALIWYVd 3IT 05662
fNOILYD0T GNVYIJO 3IJ¥NOS IHL ISYITIY ‘SNOILINYLSNI IS-NON HO4i 00662
f(1"INIHYNI) ITNGIHIS NIHL MOTIVIVA=HOMVXIH 41 05962
£473SLI MON Q3YYIASNVYL 39 NVD ANVYIHO'WILSAS MOT3-VIVA V HOdi 00862
£(INON)IDNAOT *(0‘ (INIYYND‘ [AAVWIWIWYYA IWIL) JIUNIW MIN)ITNQIHOS 06162
{ANVYI0 FHL LID OL SIYWIW ¥ ITINGIHISI 00262 1
f(4ILSVH)101S3IU ‘([[YILSYWIWYVIIHOLSS)IONNOT NIHL [[YILSYWIWEVI]ILSS\ 41 06962
£°379YTIVAY 3W0038 OL GNVY3IJO IHL ¥O4 LIVMI 00962
{SYWOUS 3S73 SYWINS NIHL IS=(IJALIWYVd JI=:MILSVW 06662
£$304n0S LON Q3IHLD34 SHNIS aGIIN SNOILONYISNI IS 00562
NID3E 0Sh62 699
‘GNVYIJO XWOWIW V ST LI 411 0062
NIHL JOWIW" IN3I¥V4 41 0SE62
NID3g 00£62 294
{ANVHIJO INTIOd Q3XIdi 05262
N3HL 1V013>[300240)WHYVd 41 :mmaw
05162
fLI]WHVA INJYVd=:[I]WYVd 00 2L TIINN L 43LS L=:1 ¥OJ 00162
fINIYVd IHL 40 AVHYV HOLdI¥DS3IA IHL XdODi 05062
00062
‘YILSVH T ¥3IOIINI 05682
NID3E 00682 L9g
!NOILONYLISNI INI¥Vd 3HLI ‘INIUVJ (NOILDNYISNI)JI3Y 05882
fANVY3IdO 30¥N0OS ¥ SQIAN LVHL SSID0¥d NOILONYLISNI NY X9 G3ILV3I¥D SI LI°SSIDONd ANVYIJO 3IHL 00R82
f(IN3YVJ)ANVY3ILO SSV1D TOYINOINGD omMQN
00182
{NOILONYLISNI 40 GN3 05982 S13 :
CANTL=:LSNILSYT f(LSNILSVI-IWIL‘WHILI)SIVISIWIL 00982
Lhitl LL61-120-91 [1€2°2fL) WIS 200Hal @
L= 06:11 LL61-120-91 £ uotrsaap VINKIS 0l-wa3shs)3q

e i i

156

£(1-SS300V-319X0* LNIYHND) ITNATHIS *(O0°'INIWVH)ITNAIHOS ‘(1+SSIOOV'ININYND)ITINAIHOS
f3AV3T OL a3USV 39 NVD IN3IHVd IHL‘IWIL SSIDOV | HILIVi
£3§TVA=[ANVE]ITYANNYE 3STI aN3
f(L INFHEND)ITNATHOS ¢ ([INVE JHOINYE)IDNNOT
NID38
NIHL [INVE)ITUIANYVEN ST
£2378YTIVAY ¥NVE 03ONI¥3IS3N 3IHL ST
£(1L*LNIYHND) ITNATHIS
fLINN XHOW3IW 3HL OL ¥IJSNVHL SSIYaav ITIAI-3INOI

fSOTISIIVLIS NOILYILINI XMOWIWE ‘L+INNOJIWIW=:LNNOIWIW
NID3E
£*3I0NIYIJ3Y IHL IQVW LVHL INIYYL IHL GNY (3ONI¥IJITY INVE 3FHLI
fINIYYd (TOHINOINGD)A3Y XNNVE MIDILNT
{SIYOLS ANV SIHOLIJ YIVA ANV NOTLONYLISNI HI08 ¥0J4 G3LVI¥D SSII0Hd ONITANVH IONIHIJIIY XYOW3IW 3IHLI
$(IN3YYJINYE)JFYNIW SSVTD TOYLINOD

f{aNVY3Id0 40 aN3
{ONVY340 INJOJ ONILVOT4 40 aN3
£(0'LN3¥V4)IINGIHIS 3813 (INON)IONNOT NIHL 2>INAS LNIYVd 4T
$L+ONAS " LNIHVd=:INAS " LNIYVd
¢NOILONYISNI IN3YVd HLIM 3IZINOWHONASI
C(LIATSOUSIHYVAILSS ([AISIUSINEVAIHILSS)ISYI 1Y
fNOTLVDOT ANVHIdO SIHL ISVITIHI

1QNVY340 ¥ILSTOIY ONILVOTS JO aN3
‘an3
L(1"IN3¥¥ND)ITINCIHOS ‘(SYWOUS)L01SIIYS
£ 3INIL WIISNVHL ANVYIAO
NID3E
3$73 aN3
f(L*INI¥YND)ITINAIHIS NIHL MOTIVIVA=\HO¥Y1d JI
£XTIVOILVWOLNY 3INOA ST HNIQUVMYOJ ‘WILSAS MOTd-VIvVa JTi
£(SYWOY¥S) 1071SIIYA ‘([[SYWOUSIWYVJIHILSS)IONNOT
NID3G
£319VIIVAY 1ON ST LI 4Ti
NIHL [[SYWOUSIWNVJILSS\ J1
NID38
f{ONVY340 HILSINIY INIOd ONILVOTdG

3$73 aN3
£(L LN3¥YND)ITINGIHOS NIHL MOTIVIVA=HOWVId JII
£473SLI MON Q3YYIJISNVHL 3§ NVO QNVEIJO'WILSAS MOT4-vVivVa V ¥Odi
£(INON)IONNOT ‘(0 (LNIYYND ' [AAVHWIWIWYY‘IWTIL) JTUNIW M3IN)ITINAIHOS
{QNVY3I40 FHL 13D OL JIYWIN v ITINAIHOSH
£(SVHOY¥S)107S33¥d ‘([[SVHO¥SIWUVAIHILSS)IDNNOT NIHL [[SVWOUSIWYVIILSS\ 41
NID3E
f{GNVH3Id0 XYOWIW V SI LI 411
NIHL JOWIW'INI¥Vd 4dI
NID38
{ANVYI40 INIOd ONILVOTdI

Lhiil LL61-100-91 [1£2°2€L)
YINKIS 0t-w33sks33q

cl=1 39vd 0G:tL LL6L-1D0-91 € uorsuap

0GLEE
00LfE
0G9€ €
009 €
0GGEE
006E€E
0SHEE
00REE
0GEEE
00£E€E
052Ef
002EE
nGLEE
00LES
0G0E €
000f €
0562¢
0062¢
0682¢
0082¢
0s5L2¢
00.L2¢
0592¢€
0092¢
0562¢
0062¢
0Sh2E
00K2E
0SE2¢E
00€£2€
0622¢
0022€
0612¢
0012¢€
0502€
0002€
0561 €
0061 E
0SRLE
nogIE
0SLLE
00LLE
0591 €
0091 €
0GSLE
0061 €
0ShiE
oonlLE
0GELE
00£1E
0621 €
0021 €

6L3
6.9

La3
£13

SL3
L13

L8
9.3

9l8

si8

hi3

LEA:]

€8

WIS 290WaLl

157

[S S

"

{"SOILSIIVLIS NOILVINHIS 3HL INdLNOi

fILVAISSVY
£30V3d NI JLVINWIS 3IW 137 ANV XVMY 09 NONi
‘an3
S(SANVE ‘Dd)A0W*+1=:0d
f1~1 AV130 (I‘1-I+3IWIL)NOTIONYLSNI M3IN JLVAILOV
NID3g
00 SY3I44nd TILNN | d3LS L=:1 ¥O4
f1=:0d ‘1=:43INNOD4NG
f4344n9 NOILONULSNI JHL 1114 OL SIHOLII NOILONHISNI HONONI FLVILINIG

SL1=:[(A1073103X3 f21=:[INWX4)03X3 ‘1=:[dWOX4]D3X3
fL€=:(ATAX3103X3 f2=:(aVX4103X3 2=:[a74SX4])23x3
£379VL IWIL NOILND3X3 NOILONYISNI 3IHL IZITVILINTI
‘aN3

faVIH MIN-:[TJHOXNVE ‘3NYL1=:[1)334IINVE
NID38
04 SMNvE TIINN | d43LS 1=:1 HO4
{SYILIVM LOITINOD XHOW3IW ¥OJ SNIVHD ONILIVM ILVHINIDI
‘an3

fQ¥3IH MIN-:[IJHOLSS *‘3N¥L=:[1]ISS
NID38
00 d3AGNI TILNN | d3LS 1=:1 ¥Od4
‘SHILTYM XONIANIJ3IQ VIVG Y03 SNIVHD ONILIVM JLIVYIN3IDI
'QVIH MIN-:HOGNOJE ‘QVIH MIN-:HOGWTd ‘QVIH MIN-:HIGVTd
fQV3IH M3IN-:HONITS ‘AVIH MIN-:HONIXJ ‘QVIH MIN-:HONIXI ‘AVIH MIN-:HO4nEI
£$304NOSIY IHL ¥OJd SNIVHD ONILIVM ILVYINIDI
£3STV4=:004dANT ‘INYL=:3C0DANOI=:IIYJANTI=3TY AV TI=:33YINTT4=:33¥ 403X = :33¥4nIXd
3343 3YV SIOWNOSIY TIVi
{SNOISIOIA 3IGOWJ00T ¥04 LIWIT H3IddN FHLI ‘S¥IJdNdeh=:3Z1S4007

f€=:[TNWT]03X3

£9G=21STd GG=IAIQTS ‘mG=:INHT ‘€G=:dWOTd f16=:074STd f06=:a114
=:1LSXd 19=:VIX4 G=:AIAXd ‘h=:INWXI ‘E€=:dWOXJ ‘2=:aVXd ‘L=:q1X4
f€=:HOL3II f2=:yISl3d ‘1=

f01=:108 '9=:G1Y¥09 ‘G=:G108 '2=:¥1¥E ‘6=:0AS

‘SY0LdI1¥0S3I0 300040 NOILINYISNII

f06=:1V0Td ‘1-=:ANIOVHL G=:HONVYE ‘€=:IS f1=:XY¥ ‘0=:yy
fSY01dTYIS3A I4XL NOILONYISNII

f21=:4E3NVL ‘L1=:1STIq¥E=:0QVHIN ‘6=:DIYANI ‘@=:ATISOUS {L=:ATSHNS
£9=:SYWIYS ‘G=:SVWINS ‘h=:QaVyg=:9¥Id) f€=:3YOLS !2=:3002d0 ‘1=:3dXL
fSHOL4T1¥IS3IA NOILONYISNII

CE=TWYILIN ‘2 :WYILT f1=:N39I

{SHOLJT¥IS3IA IWNIL IAIAI-YIINIG

f€=:MOTAVIVA 12=:3NIT3JId ‘1=:1TVI¥3S

fSYOLdI¥ISIA TVENLOILIHOWVI

f1Gh=143aNI

£§35044Nd NOILVINIWND0d ¥O4 GIONAOMINI S3ITAVIYVA ¥OLJI¥ISIA 3IHL IZITVILINIG

f4IYWIN 30 aN3
CCOANVE IIIYANNYE ‘ [INVE JHONNYE) ANOLXIN
f°3IWIL 3TIXD IYIINI IHL ¥ILAV XINO XNNVE IFHI 3ISV3ITIY 1Indi

Lhitl LL6L-1D0-91 [1€2°2EL)

=y 3ovd 0S:LL LL61-120-91 € uotrsuaap

—— [a—— (F=——"S ——t ——

0G£9f
00£9¢
0629¢
0029¢€
0519¢
0019¢
0609¢
0009¢€
066G¢€
0066¢
058G¢E
008GE
0GLGE
00L6§
0696¢
0095€
06G6E
006SE
0GHGE
00hSE
06£6E
00£6E
0626G¢
0026¢§
0516¢
0016GE
0506G¢E
0006€
0G6hE
006hE
0S8hE
008hE
0SLhE
00LhE
0S9hE
009hE
0GShE
00ShE
oShhE
00hkE
0SERE
00ERE
052hE
002h€
0GLHE
001LhE
0S0hE
000hE
0ShEE
006€€
0S8EE
00REE

WIS 2q0HaL
VINWIS 01-wd3sks)3q

183

184

083

0|ea

158

43123130 SHONNT ON

a3SN SIHILIMS 1INvd3a

‘QOWAL 40 aN3 069.f 13
£350712° 1NANT 009LE
{NOILVINWIS 40 aN3 06GLE 23
!1234SNI 30 GN3 006.§ £83
£3s5010 0ShLE
‘3OVWILNQ f(L'3IWILTO)INILAO *(w:IWIL HOITO w)LX3LLINO 0onLE
f(SHOITD)LRILNO ‘(wiHOIT2w)IX3ILINO ‘IDVWILNO 0SELE
CIOYWILNO ‘(OL‘9 (L WYILNILSTIHIWIL/[O‘WHILN]LSIHIWIL)XTALNO (w:INdNYHL NOILONYLISNI TNIISNW)LIXILINO 00£LE
CIOVAILNG ‘(OL‘9 (L ‘WHILIJLSTHIWIL/ (O ' WYILTJISIHIWNIL)XIILNO *(u:INdNYHL NOTLONYISNI WILSASw)IXILINO 0522€
£3DVHILNO ‘(OL‘9° (L NIDIILISIHIWIL/[0 NIDIJISTHIWIL)XIILNO *(w:LlNdNYHL SSIDONd WILSASW)IXILLINO 002LE
£IDVHILNO ‘3IDVWILNO {(9‘INNOJIWIW)LNILNO ‘(u:SIONIWIJIIY AYOWIWW)1XILINO 0SLLE
SIOVNILNO ‘(9 'WYILWNA)LNILNO ‘(w:S3ISSIIONd NOILONYLISNI AWWNGW)IX3ILINO 001 LE
fIDVAILNO ‘(9 ‘WHILAV)INTLNO ‘(w:S3ISSIOONd NOILONYLSNI GILHOAVW)IXILINO 050LE
{IDVAILNO ‘(9°NIDJOOTIINILNO ‘(w:SISSIIONd NOILINYISNI 3GORJO0Tw)1IXILINO 000.§
£3DVAILNO ‘(9 °NIDWYON)INILNO ‘(wiSISSID0O¥d NOILINYLSNI TVWHON)LIXILLINO 0G69€
f3OVHILNG ‘(9°INIL)INILNO ‘(w:3IWIL NOILINI3X3w)IXILLNO 0069¢€
{IDVAILNO ‘IDVAILNO (w(d430) Ow 3ST3 w(NO) Lu NIHL HONVHE JI)IXILINO ‘(w :3GOW400Tw)1IXILINO 0689€
$3DVWILNO S289¢
f(w(MOTAVIVA) €w 3STT w(AINITIAIM) 2w NIHL 2=HOWVIS 41 3S73 w(IVI¥3S) 1w NIHL L=HONVTS 41)IXILINO 0099§
f(w $3YNLDILTHOWV LINN INIOd ONILVOTdw)1X3ILINO 0SL9E
$3OVWILNO G2L9¢
f(n(MOT4VLVA) € 3ST3 (GINITIMIA) 2w NIHL 2=HOYVXIJ J1 3S73 W (IVI¥IS) Lu NIHL L=HOUVXIJ 31)IX3ILLNO 00L9€
f(w *IJUNLOILTHOWY LINN INIOd GIXIdw)IXILINO 0699¢€
!IOVNILAO ‘(h‘SHIJING)INILNO ‘(w:3ZIS ¥3IJ4NE NOILONYLISNIW)IXILINO 0099¢
CIOVAILNO ‘(N SHNVE)INILNO ‘(w:SHNVE XYOW3IW 30 ¥IGWNNW)IXILINO 0659€
fIOVHILINO ‘(' ITORD)INILNO ‘(w:IWIL 3TDAD AHOWIW.)LIXILINO 0059¢
NID38 0Sh9f £89
00 1NdINO L1D3IJSNI 00h9E
Leiit LL61-120-91 [1€2°2ELl) WIS 2q0Wal
ni-1 39vd 06:11 LL61-120-91 £ uoysuap VINKIS 0L-w33sks)3q

~ T S - b e - 2 " - NEPT—

[AND67a]

[AND67b]

[BAL72]

[BEL71]

[BHA76]

[BIR73]

[BIR74]

[BOL67]

[BRO72]

[DEN74]

[DRA66]

[GRE69]

[IMS75)

159
LIST OF REFERENCES

Anderson, D. W., F. J. Sparacio, and R. M. Tomasulo, '""The IBM
System 360/Model 91 : Machine Philosophy and Instruction

Handling,'" IBM J. of Res. and Dev., Vol. 11, pp. 8-24,
January 1967.

Anderson, S. F., J. G. Earle, R. E. Goldschmidt, and D. M. Powers,
"The IBM System 360/Model 91: Floating - Point Execution

Unit," IBM J. of Res. and Dev., Vol. 11, pp. 34~53, January 1967.

Ballance, R. S., J. A. Cocke, and H. G. Kolsky, "The Lookahead
Unit," in Planning a Computer System, McGraw-Hill, 1962.

Bell, C. G. and A. Newell, Computer Structures: Readings and
Examples, McGraw-Hill, 1971.

Bhandarkar, D. P., A Hierarchy of Analytic Models for Complex
Computer Systems,''The European Computing Conference on_ Computer
Systems_Evaluation, September 1976.

Birtwistle, G., et al., SIMULA Begin, Auerbach, 1973.

Birtwistle, G. and J, Palme, SIMULA Language Handbook - Part I,
DECUS Program Library, 1974.

Boland, L. T., G. D. Granito, A. V. Marcotte, B. V. Messina,
and J. W. Smith, "The IBM System 360/Model 91: Storage System,"

IBM J. of Res. and Dev., Vol. 11, pp. 54-68, January 1967.

Browne, J. C., K. M. Chandy, R. M. Brown, T. W. Keller,
D. F. Towsley, and C. W. Dissly, "Hierarchical Techniques for
the Development of Realistic Models of Complex Computer Systems,'

Proc. of the IEEE, Vol. 63, pp. 966-975, June 1975.

Dennis, J. B and D. P. Misunas, "A Preliminary Architecture for
a Basic Data-flow Processor,'" Project MAC Computation Structures
Group Memo 102, M.I.T., August 1974.

Draper, N. R. and H. Smith, Applied Regression Analysis, John
Wiley, 1966.

Gregory, R. T. and D. L, Karney, A Collection of Matrices for
Testing Computational Algorithms, Wiley-Interscience, 1969.

IMSL Library 2, Edition 5, International Mathematical and
Statistical Libraries, Inc., 1975.

[KUM76a]

[KuM76b]

[SEK72]

[SV076]

[ToM67]

[TJA70]

[TSA72]

[ZE176]

160

Kumar, B., "Performance Evaluation of a Highly Concurrent Computer
by Deterministic Simulation," Coordinated Science Laboratory Report
R-717, University of Illinois, February 1976.

Kumar, B. and E. S. Davidson, '"Performance Evaluation of Highly
Concurrent Computers by Simulation," submitted for publication
in the Comm. ACM.

Sekino, A., "Performance Evaluation of Multiprogrammed Time-Shared

Computer Systems,' Project MAC Tech. Rep. 103, M.I.T., September
1971.

Svobodova, L., Computer Performance Measurement and Evaluation
Methods: Analysis and Applications, Elsevier, 1976.

Tomasulo, R. M., "An Efficient Algorithm for Exploiting Multiple
Execution Units," IBM J. of Res. and Dev., Vol. 11, pp. 25-33,
January 1967.

Tjaden, G. S. and M. J. Flynn, 'Detection and Parallel Execution
of Independent Instructions,’ IEEE - TC, Vol. C-19, pp. 889-895,
October 1970.

Tsao, F. T., L. W. Comeau, and B. H. Margolin, "A Multi-factor

Paging Experiment,' Statistical Computer Performance Evaluation,
Academic Press, 1972.

Zeigler, B. P., Theory of Modelling and Simulation, Wiley-
Interscience, 1976.

161
VITA

Balasubramanian Kumar was born in Pudukkottai, India on January 30,
1951. He received a B. Tech. degree in Electrical Engineering (Electronics)
from the Indian Institute of Technology, Madras, India in 1973. At the
Indian Institute of Technology, he received the President of India Prize
for the best academic record in all branches of engineering in the graduating
class of 1973. 1In 1976 he received an M.S. degree in Computer Science from
the University of Illinois at Urbana-Champaign. From 1973 to 1977, he was

employed as a graduate research assistant at the Coordinated Science

Laboratory of the University of Illinois at Urbana-Champaign.

